LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

第一種過誤と第二種過誤

第一種過誤(だいいっしゅかご、)または偽陽性(ぎようせい、)と第二種過誤(だいにしゅかご、)または偽陰性(ぎいんせい、)は、仮説検定において過誤を表す用語である。第一種過誤をα過誤(α error)、第二種過誤をβ過誤(β error)とも呼ぶ。なお「過誤」とは、誤差によって二項分類などの分類を間違うことを意味する。過誤は次の2種類がある。統計的過誤を2種類に大別する。まず、推定した状態に対応する「帰無仮説」がある。例えば、個人が病気ではないとか、被告人が無実であるとか、潜在的なログイン対象が認可されていないことなどを表す。一方で、帰無仮説と全く逆の状況に対応する「対立仮説」がある。すなわち、個人が病気にかかっているとか、被告人が有罪であるとか、ログイン対象が許可されたユーザであるといったことを表す。目標は、偽である仮説が棄却されて真である仮説が採用されるようにすることである。ある種のテスト(血液検査、裁判、ログイン試み)を実施し、データを得る。テストの結果は、陰性かもしれない(つまり、病気でない、有罪でない、ログインが許されない)。一方、それは陽性かもしれない(つまり、病気、有罪、ログイン成功)。テストの結果と実際の状態が一致していないなら過誤が発生したことになる。テストの結果と実際の状態が一致しているなら、判断は正しいことになる。どちらの仮説を誤って採用してしまったかによって、過誤を「第一種過誤」と「第二種過誤」に分類する。第一種過誤(α過誤、偽陽性)は、帰無仮説が実際には真であるのに棄却してしまう過誤である。第二種過誤(β過誤、偽陰性)は、対立仮説が実際には真であるのに帰無仮説を採用してしまう過誤である。「真犯人を逮捕すること」を「帰無仮説を棄却すること」に例える。第一種過誤は「一般市民を冤罪で逮捕してしまうこと」である。第二種過誤は「真犯人を取り逃がすこと」を意味している。刑事訴訟法336条で、「被告事件が罪とならないとき、又は被告事件について犯罪の証明がないときは、判決で無罪の言渡をしなければならない」と定めている。これは疑わしきは罰せずとも言う。第一種過誤を避けるような手法を採用することを推奨している。他の分類については後述の過誤種別拡張の提案を参照されたい。仮説検定は、2つの標本の分布の違いが無作為な偶然性で説明できるかどうかを判定する技法である。2つの分布に有意な差があると結論付ける場合、その差異が無作為な偶然性では説明できないことを十分注意して判断する必要がある。真ではない仮説を採用する可能性をなるべく小さくするよう注意を払わなければならない。一般に第一種過誤となる確率を .05 か .01 に設定する。これはつまり100例のうち5例か1例で過誤が発生することを意味する。これを「有意水準」と呼ぶ。100例のうち5例というのが十分かどうかは一概には言えないため、有意水準の選択には細心の注意が必要である。例えば、シックス・シグマの品質管理を採用する工場では標準偏差の6倍の幅(±6σ)を管理限界とする(これを外れるのは極めて珍しい)。統計的手法の利点は無作為な標本抽出にある。つまり、2つの分布の差が治療の前後でどう変化するかを無作為抽出で追跡可能である。しかし、現実がそれほど単純でないのは明らかである。無作為標本を取り出したとき、全く同じ分布となる可能性は極めて小さい。たとえ同じ分布であったとしても、それが偶然の産物なのか、それとも常にそうなるのかは判断できない。1928年、著名な統計学者のイェジ・ネイマン(1894年 - 1981年)とエゴン・ピアソン(1895年 - 1980年)は「特定の標本が、ある個体群から無作為に選ばれたと判断できるかどうかの判定」という問題を議論した。そして、Davidは「'無作為な'という形容詞は標本の抽出方法に対するもので、標本そのものにかかるのではない」と指摘した。彼らは「過誤の2つの源泉」を次のように表した:1930年、彼らは「過誤の2つの源泉」の概念を次のように練り直した:…仮説検定では次の2点を常に考慮しなければならない。(1) 我々は、真の仮説を棄却してしまう可能性を必要に応じて低く抑えることができなければならない。(2) 偽と思われる仮説が棄却されるような検定でなければならない。 1933年、彼らはこれらの「問題は、仮説の真偽が確信を持って断言できるような場合には存在しない」と述べた。彼らはまた、「対立仮説群」から特定の仮説を棄却または採用する決定において、過誤が容易に発生するとした。…(そして)それらの過誤は以下の2種類に分けられる:ネイマンとピアソンの共同執筆論文では、H が常に「検定対象仮説」を表。添え字は "O" であってゼロではない(「オリジナル」の意)。同じ論文で、彼らは「2つの過誤の源泉」を第一種の過誤(errors of type I)および第二種の過誤(errors of type II)と呼んでいる。ネイマンとピアソンによる過誤の定義は広く採用され、第一種過誤と第二種過誤として知られている。また、分かり易さから、これらをそれぞれ偽陽性と偽陰性とも呼ぶことが多い。これらの用語は本来の定義から拡大解釈され、様々な場面で使われるようになっている。例えば、上の例は、この拡大された定義での曖昧さを示している。ここでは「無罪であること」を中心に考えているが、当然ながら「有罪であること」を中心に考えることもできる。以下の表で条件を示す。妊娠検査の例を示す。ここで、検査結果が「真」や「偽」といった場合、2種類の意味があることに注意されたい。実際の状態(条件)では、真 = 有(ある属性が有る)と、偽 = 無(ある属性が無い)であり、検査結果の正確度においては、真陽性/偽陽性/真陰性/偽陰性という使われ方をする。上の表ではこの混同を避けるため、状態については「有/無」で表している。偽陽性率とは、陰性の標本集団のうち、誤って陽性と判定された標本の割合である。すなわち、1 から特異度を引いた値と同じである。仮説検定では、この割合をformula_2で表し、formula_3を特異度と定義する。特異度が増大すると第一種過誤となる確率が低下するが、第二種過誤となる確率が増大する。偽陰性率とは、陽性の標本集団のうち、誤って陰性と判定された標本の割合である。すなわち、1 から感度を引いた値と同じである。仮説検定では、この割合をformula_5で表す。formula_6を検出力と呼ぶ。ネイマンとピアソンが提唱した第一種過誤(偽陽性)と第二種過誤(偽陰性)は広く採用されているが、それら以外の過誤(「第三種過誤」や「第四種過誤」)を定義しようという試みがいくつかなされてきた。これらは広く受け入れられるには至っていない。以下では、主なものを紹介する。ユニヴァーシティ・カレッジ・ロンドンでネイマンやピアソンと同僚だったこともある Florence Nightingale David (1909-1993)は、冗談交じりに 1947年の論文で、自身の研究結果についてネイマンとピアソンの「過誤の2種類の源泉」を三番目に拡張する可能性について触れている。私は、この理論の基本的考え方を説明するにあたって、私が(第三種の)過誤に陥っているという批判、標本に対して間違った検査法を選んでいるという批判を受けるのではないかと心配してきた 。1948年、Frederick Mosteller(1916年 - 2006年) は「第三種過誤」を次のように定義することを提唱した。Henry F. Kaiser(1927年 - 1992年)は1966年の論文でMostellerの分類を拡張し、「第三種過誤」を棄却された仮説に基づいて間違った判断をすることを指すとした。また、Kaiserはこれをγ過誤(γ errors)と呼んでいる。1957年、Allyn W. Kimball(オークリッジ国立研究所の統計学者)は、第一種過誤と第二種過誤に続く新たな種類の過誤を提案した。Kimballの定義した「第三種過誤」とは「間違った問題に正しい答を与えることによる過誤」である。数学者リチャード・ハミング(1915年 - 1998年)は「間違った問題に正しい解法を与えるよりも、正しい問題に間違った解法を与える方が望ましい」と述べている。ハーバード大学の経済学者Howard Raiffaも「間違った問題を解く破目に陥った」経験を述べている。1974年、Ian MitroffとTom FeatheringhamはKimballの分類を拡張し、「問題の解法を考える際の最重要な要素は、その問題がまずどのように説明され、公式化されているかである」とした。彼らは、第三種過誤を「正しい問題を解くべきときに間違った問題を解く過誤」あるいは「問題を正しく表現すべきときに間違った表現を選択する過誤」とした。1969年、ハーバード大学の経済学者Howard Raiffaは冗談として「第四種過誤の候補: 正しい問題を解くのに時間が掛かりすぎること」とした。1970年、MarascuiloとLevinは第四種過誤を提案した。これはMosteller的な定義であり「正しく棄却された仮説の不適切な解釈」による過誤である。彼らは、この例として「医師の病気の診断が正しいのに、その後の医薬の処方箋が間違っている場合」を挙げている。統計的検定においては、以下の2つのトレードオフがある。しきい値の設定によって、感度を変えることができる。感度を低くすれば真陽性のものを陰性と判定する危険が大きくなり、感度を高くすれば偽陽性を生む危険が大きくなる。コンピュータ関連では、「偽陽性」や「偽陰性」という言葉が様々な場面で使われている。医療において、「スクリーニング」と「臨床検査」には大きな違いがある。例えば、米国の多くの州では、新生児に対してフェニルケトン尿症と甲状腺機能低下症のような先天性疾患のスクリーニングを行う。この場合、「偽陽性」の確率が非常に高いが、非常に早い段階でそれらの疾患を検出できるという利点がある。輸血の際にHIVや肝炎のスクリーニングを行うが、この場合も「偽陽性」の確率は高い。実際にそれらの病気にかかっているかの検査はもっと正確な結果が得られる。スクリーニングで最も「偽陽性」が話題となるのは、マンモグラフィーによる乳癌の検査であろう。米国におけるマンモグラフィー検診での偽陽性率は 15% にもなっており、世界的に見ても非常に高い。オランダでは偽陽性率が最も低く、1% である。健康診断では「偽陰性」が大きな問題となる。「偽陰性」の場合、患者に対して本当は病気にかかっているのにかかっていないという誤ったメッセージを伝えてしまう。このため、その後の治療方針が誤った前提の下に立てられてしまう。例えば、冠動脈の動脈硬化症を検出する心臓ストレステストで偽陰性があることが知られている。特に症状がありきたりの病気の場合に「偽陰性」は深刻な問題を生じる。集団の中の患者数が非常に少ない場合には「偽陽性」が問題となる。詳しくはベイズ推定を参照されたい。偽陽性という用語は超常現象や心霊の調査において、誤って証拠として採用される写真などを意味する。つまり、証明されていないが霊などが写っているとされる媒体(画像、動画、音声録音など)を指す。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。