水素(すいそ、、、)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素を軽水素とも呼ぶ。日本語の「水素」は「水の素」という意味の表現だが、そもそも発見されたヨーロッパで水素は、水を生むという性質に着目され、"水を生むもの"という表現で呼ばれて来た歴史を持つ。最初に命名されたフランスで"水を生むもの"という意味の表現で呼ばれたのであり、それに倣って日本語でも「水素」となったのである。仏語の 「'(イドロジェーヌ)」や、それを英語化した 「'(ハイドロジェン)」は、ギリシア語の 「 ヒュドール」(ラテン文字表記:、=「水」)と 「ゲネン」(ラテン文字表記:、=「生む」「作り出す」)を合わせた語で、"水を生むもの"という意味の合成語である。独語でも 「(ヴァッサーシュトーフ)」と言い、やはり"水を生むもの"という意味である。水素を気体として分離して発見したのは1766年のヘンリー・キャヴェンディッシュであり、アントワーヌ・ラヴォアジエが1783年に と命名したのである。ただし、1671年にはロバート・ボイルが鉄と希硝酸を反応させて生じる気体が可燃性であることを記録している。ただし中国語では、水素に「氫」(中国語読み:チン。日本語読み:けい)という字が充てられ、別の漢字で区別されている。水素は宇宙で最も豊富に存在する元素であり、(ダークマターとダークエネルギーを除いた)宇宙の質量の3/4を占め、総量数比では全原子の 90 % 以上となる。これらのほとんどは星間ガスや銀河間ガス、恒星あるいは木星型惑星の構成物として存在している。地球表面の元素数では酸素・珪素に次いで三番目に多いが、水素は質量が小さいため、質量パーセントで表すクラーク数では9番目となる。ほとんどは海水の状態で存在し、単体の水素分子状態では天然ガスの中にわずかに含まれる程度である。地球の大気中での濃度は 1 ppm 以下とほとんど存在していない。水素原子は宇宙が誕生してから約38万年後に初めてできたとされている。それまでは陽子と電子がバラバラのプラズマ状態で光は宇宙空間を直進できなかったが、電子と陽子が結合することにより宇宙空間を散乱されずに進めるようになった。これを「宇宙の晴れ上がり」と言う。宇宙における主系列星のエネルギー放射のほとんどはプラズマとなった4個の水素原子核がヘリウムへ核融合する反応によるもので、比較的軽い星では陽子-陽子連鎖反応、重い星ではCNOサイクルという過程を経てエネルギーを発生させている。水素原子はいずれの核融合反応においてもこれを起こす担い手である。宇宙空間に散逸する地球の大気は少ないが、それでも 1 秒あたり水素が 3 kg、ヘリウムが 50 g ずつ放出されている。これは大気が薄く原子や分子の速度が減速されずに宇宙へ飛び出すジーンズエスケープやイオン状態の荷電粒子が地球磁場に沿って脱出するプロセスがある。なお、加熱された粒子がまとまって流出するハイドロダイナミックエスケープや太陽風が持ち去るスパッタリングは現在の地球では起きていないが、地球誕生直後はこの作用によって水素が大量に散逸したと考えられる。固有磁場を持たない金星は現在でもハイドロダイナミックエスケープやスパッタリングが続き、地表には比較的重いため残った酸素や炭素が作る二酸化炭素が大気のほとんどを占め、水が無い非常に乾燥した状態にある。火星も軽い水素を中心に散逸し、かろうじて氷となった水が極部分の土中に残るに止まる。水素には、水素(軽水素)H 、重水素 H (デュウテリウム、ジューテリウム、略号D) 、三重水素 H (トリチウム、略号T)の三つの同位体が知られている。このうち、最も軽い H は、一つの陽子と一つの電子のみによって構成されており、原子の中で中性子を持たない核種の1つである。存在が確認されている中で他に中性子を持たない核種はリチウム3のみである。それぞれの同位体は質量の差が2倍・3倍となり、性質の違いも大きい。例えば D は H よりも融点や沸点が高くなり、溶融潜熱は倍近くに、蒸気圧は 近くとなる。2013年現在、より重い同位体は水素4から水素7までが確認されている。最も重い水素7(原子核は陽子1、中性子6よりなる)はヘリウム10を軽水素に衝突させることで合成されている。質量数が 4 以上のものは寿命が極めて短く、たとえば水素7では半減期が 23 ヨクト秒(= 2.3 × 10 秒)ほどしかない。水素の同位体は、それぞれの特徴を有効に活かした使い方をされる。重水素は原子核反応での用途で、中性子の減速に使用され、化学や生物学では同位体効果の研究、医療では診断薬の追跡に使用されている。また、三重水素は原子炉内で生成され、水素爆弾の反応物質や核融合燃料、放射性を利用したバイオテクノロジー分野でのトレーサーや発光塗料の励起源として使用されている。水素分子は、常温常圧では無色無臭の気体として存在する、分子式 H で表される単体である。分子量 2.01588、融点 −259.2 ℃(常圧)、沸点 −252.6 ℃(常圧)、密度 0.0899 g/L、比重 0.0695(空気を 1 として)、臨界圧力 12.80 気圧、水への溶解度 0.021 mL/mL水(0 ℃)。最も軽い気体である。原子間距離は 0.074 nm、結合エネルギーはおよそ 104 kcal/mol。水素分子は常温で安定であり、フッ素以外とは反応を起こさない。しかし何かしらの外部要因があればその限りではなく、例えば光がある状態では塩素と激しい反応を起こす。また水素と酸素を混合したものに火を付けると起こす激しい爆発(水素爆鳴気)は、混合比下限は 4.65 %、上限は 93.3 % であり、空気との混合では 4.1 % — 74.2 % となり、これはアセチレンに次ぐ広い爆発限界の範囲を持つ。ガス密度が低い水素は早い速度で拡散する性質を持ち、また燃焼時の伝播も早い。そのため、ガス漏れを起こしやすい傾向にある。原子径の小ささから、金属材料に侵入し機械的特性を低下させる(水素脆化)傾向が強い。これは高温高圧環境下で顕著となり、封入容器の材質には注意を払う必要がある。−250 ℃ 以下で液化させると体積は となり、しかも軽いため低温貯蔵性には優れる。ガス惑星の内部など非常に高い圧力下では性質が変わり、液状の金属になると考えられている。逆に宇宙空間など非常に圧力が低い場合、H や H、単独の水素原子などの状態も観測されている。H 分子形状の雲は星の形成などに関係あると考えられている。水素分子は、それぞれの原子核(プロトン)の核スピンの配向により、オルト (ortho) とパラ (para) の二種類の異性体が存在する。オルト水素は、互いの原子核のスピンの向きが平行で、パラ水素ではスピンの向きが反平行である。この二つは、化学的性質に違いがないが、物理的性質(比熱や熱伝導率など)がかなり異なる。これは内部エネルギーにある差によるもので、パラ水素側が低い。統計的な重みが大きいほうをオルトと呼ぶ。常温以上では、オルト水素とパラ水素の存在比はおよそ 3:1 である。低温になるほどパラ水素の存在比が増し、絶対零度付近ではほぼ 100 % パラ水素となる。オルト‐パラ変換を起こす触媒は、活性炭や鉄などの金属の一部、常磁性物質またはイオンなどがある。高い圧力下において金属化すると考えられている水素は、実際に1996年にローレンス・リバモア国立研究所のグループが、140 GPa(1 GPa = 約 1 万気圧), 数千℃という状態で、100万分の 1 秒以下という短寿命ではあるが、液体の金属水素を観測したと報告している。しかしながら、2006年現在、数百 GPa のオーダーで圧力を加える実験が行われているものの、固体の金属水素の観測はされていない。励起状態の水素が金属化すると極めて強力な爆薬になるとの理論計算が行われ、電子励起爆薬として研究されている。この理論では圧力だけでは不十分であり、水素を励起状態にして圧力をかければ金属化するとしている。金属化そのものが達成されていないためにその真偽は未だ不明であるが、金属化した水素は室温超伝導を達成するのではないかという予想がある。この可能性の傍証として、周期表で水素のすぐ下のリチウムは、30 GPa 以上という超高圧下で超伝導状態となることが示されている。リチウムの超伝導への転移温度は圧力 48 GPa で 20 K 程度であるが、この数字は単体元素のものとしては高い部類に入り、いくつかの例外を除けば一般に軽い元素ほど転移温度は高くなるため、最も軽い元素である水素は、より高い転移温度を持つ可能性が十分ある。木星型惑星(木星・土星)の深部は非常に高い圧力になっており、液体金属水素が観測された条件と似ている。木星型惑星を構成する最も主要な元素の一つである水素は、この状況下では金属化している可能性があり、惑星の磁場との関わりも指摘されている。元素およびガス状分子の中で最も軽く、また宇宙で最も数が多く、珪素量を10とした際の比率は2.79×10である。地球上では水や有機化合物の構成要素として存在する。水素分子は常温・常圧では無色無臭の気体で、とても軽く、非常に燃焼・爆発しやすいといった特徴を持つ。そのため日本では、高圧ガス保安法容器保安規則により、赤いボンベに保管するように決められている。水素は電気陰性度が 2.2 であり、酸化剤としても還元剤としても働く。このため非金属元素とも金属元素とも親和しやすい。例えば、水素と酸素が化合するときには還元剤として働き爆発的な燃焼と共に水 HO を生じる。ナトリウムと水素との反応では酸化剤として働き、水素化ナトリウム NaH を生じる。このような水素と他の元素が化合した物質を水素化物という。水素化物の結合には、イオン結合型・共有結合型の他に、パラジウム水素化物などの侵入型固溶体(侵入型化合物)と呼ばれる三種類の形態がある。イオン結合型の化合物の中では、水素は H イオン(ヒドリドイオン)として存在する。共有結合型は電気陰性度が高いPブロック元素と電子を共有して化合する。侵入型固溶体は一種の合金であり、水素原子は金属原子の隙間にはまり込むように存在している。このため、容易かつ可逆的に水素を吸収・放出することが出来、水素吸蔵合金に利用される。なお、高性能な水素吸蔵合金中の水素原子の密度は、液体水素のそれに匹敵する。一方、より電気陰性度の大きい元素との化合物では水素は H イオンとなる。水中で水素イオンを生じる物質が狭義の酸である。水溶液中では水素イオンは、H(ヒドロン)ではなく、水分子と結合して HO(オキソニウムイオン) として振舞う。水素はまた、炭素と結合することで、様々な有機化合物を形成する。ほとんど全ての有機化合物は構成原子に水素を含む。おもな元素の水素化物の化学式と国際純正応用化学連合 (IUPAC) による組織名、および(存在するものは)慣用名を右表に示す。水素のイオンには、陽イオンである水素イオン(hydron, ヒドロン又はハイドロン)と、陰イオンの水素化物イオン(hydride, ヒドリド又はハイドライド)とが存在する。H はプロトン(陽子)そのものであるが、一般に水素は同位体混合物なので、水素の陽イオンに対する呼称としてはヒドロンが正確である(すなわちヒドロンは H、D、T の総称である)。しかし、化学の領域において単に「プロトン」と呼ぶ際は水素イオンを指し示していると考えて差し支えはない。水素イオンの濃度
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。