LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

ファジィ論理

ファジィ論理(ファジィろんり、)は、1965年、カリフォルニア大学バークレー校のロトフィ・ザデーが生み出したファジィ集合から派生した多値論理の一種で、真理値が0から1までの範囲の値をとり、古典論理のように「真」と「偽」という2つの値に限定されないことが特徴である。さらにlinguistic variablesは、「ちょっと暑い」というような、言語学的(linguistic)な(と、ファジィの研究者は表現する)ものを表す変数(variables)である(その内容自体は、「気温が摂氏30度の時は 0.2(30度は「ちょっと」ではないから)」「気温が摂氏25度の時は 0.8」「気温が摂氏20度の時は 0.3」といったように、至って定量的なものであり、「言語学的な値」という何かよくわからないフワフワしたものを扱ってくれる魔法ではない)。ファジィ論理は制御理論(ファジィ制御)から人工知能まで様々な分野に応用されている。ファジィ論理と確率論理は数学的に似ており、どちらも0から1までの値を真理値とするが、概念的には解釈の面で異なる。ファジィ論理の真理値が「真の度合い」に対応しているのに対し、確率論理では「確からしさ」や「尤もらしさ」に対応している。このような違いがあるため、ファジィ論理と確率論理では同じ実世界の状況に異なるモデルを提供する。真理値と確率が0から1の範囲の値をとるため、表面的には似ているように思われる。例えば、100mlのコップに30mlの水が入っているとする。これに対して「空」と「満杯」の2つの概念を考える。それぞれの意味は所定のファジィ集合、およびそれを定義付けるメンバシップ関数で表される。例えば、そのコップについて「空だ」が真である度合いは0.7、「満杯だ」が真である度合いは0.3と定義することも考えられる。「空だ」という概念は主観的であり、観察者や設計者によって感じ方は異なる。設計者によっては、50mlでも満杯だとするようにメンバシップ関数を設定するかもしれない。ファジィ論理ではあいまいな現象の数理モデルとして「真の度合い」を使うのに対し、確率論は未知のことに対しての数理モデルである。確率論的手法を使って同じことを達成するには、「満杯」か否かを表す二値変数をコップに入っている水の量という連続値によって決定するという形で定義することになる。ファジィ論理は洗濯機や冷蔵庫のような家電機器の制御に使われる。例えば洗濯機では、洗濯物の量や洗剤の濃度を調べて、洗濯槽の回転などを調整する。基本的な応用の特徴として、連続値をいくつかの区分に分ける点が挙げられる。例えば、アンチロック・ブレーキ・システムでは温度を測定するが、温度をいくつかの区分に分け、それぞれにメンバシップ関数を定義し、ブレーキを適切に制御する。各関数は同じ温度に0から1までの真理値を割り当てる。これらの真理値を使って、ブレーキをどう制御すべきかを決定する。上図では、"cold"、"warm"、"hot" という関数で温度の値をマッピングしている。ある温度には各関数に対応した3つの真理値がある。上図で縦線で示している温度を見てみると、3つの真理値(0.8、0.2、0)が対応し、それらを解釈すると「かなり冷たい」(青い矢印)、「やや暖かい」(黄色の矢印)、「熱くない」(赤い矢印)ということになる。数学における変数は一般に数値を値とするが、ファジィ論理は非数値的な「言語学的変数」を使うことで規則や事実の表現が容易になるような分野にもよく応用される。ここでいう「非数値的」「言語学的」という意味は、例えば速度といったような変数のような「確定的な値を持つような変数」ではない、という意味であって、実際のところ(ソシュールやチョムスキーらによるような)言語学的な何かがあるわけではない。具体例として「年齢」に対し「若い」、あるいはその反対の「高齢だ」という値は、結局のところ、「20歳」という実際の年齢に対して、「若い」は 0.8 という高い値になり、「高齢だ」は 0.05 という低い値になる、といったように、最終的には実数(数値)になるのである。言語学的変数の最大の利点は、主たる単語に修飾語を添えることでその意味を修正できる点であると主張される。修飾語は特定の関数と対応付けることができる。例えば、ザデーはメンバシップ関数の平方をとることを提案している。ファジィ集合論では、ファジィ集合に関するファジィ演算を定義している。これを利用する際の問題は、適切なファジィ演算がどれなのかわからない場合があることである。そのため、ファジィ論理ではIF/THEN規則やそれに類するもの(例えばファジィ関係行列)を使うのが一般的である。規則は以下のような形式で表現される。例えば、ファンを使って温度を一定に保つ非常に単純な機器があるとしたら、次のような規則が考えられる。ELSE節がない点に注意されたい。全ての規則は同時に評価される。何故なら、温度は(程度の差はあっても)同時に「寒い」と「普通」の両方に属するといったことが考えられるからである。ブール論理の論理演算 AND, OR, NOT に相当する演算がファジィ論理にもあり、例えば下記のように定義される。下記の定義はザデーのオリジナルの論文で定義されていたもので、ザデー演算子とも呼ばれる。ここで x と y はファジィ変数である。他の演算として、より言語的な「ヘッジ(hedges)」がある。これは、数式で表される集合の意味(例えば「寒い」)を修飾する「非常に」とか「いくぶん」といった副詞に相当するものである。プログラミング言語での応用として、Prologは規則群のデータベースに論理問い合わせを行う構造になっていて、ファジィ論理との相性が良い。このようなプログラミングを論理プログラミングという。身長を「高い」と「低い」に分けることを考える。古典集合論(古典論理)では、例えば次のように規則を定義する。ファジィ規則は背が「高い」と「低い」を明確に区別しない。そのような区別は現実的ではない。そこで、以下のような規則を定義する。ファジィの場合、1.83メートルのような明確な身長の区分けはせず、次のようなファジィ値の割り当てをする。従って、真理値も二値ではなく、以下のような5値にする。クリスプ集合(二値)の場合、1.79メートルの身長の人は単に背が低いとされる。1.8メートルや2.25メートルの人は背が高いとされる。なお上の記述では、性別を二値情報、すなわち既知で曖昧さのない情報とみなしている。対象の性別を外見などから判断する場合、もしくは間性の存在などを考慮する場合には、性別についてもファジィ値を導入し、規則の条件部をIF male >= agree somewhat AND ...のようにする必要がある。数理論理学には、これまで説明してきたファジィ論理をモデルとして形式体系がいくつか存在する。その多くは、いわゆるt-normファジィ論理に属する。なお、各論理体系で使われる演算は前述のザデー演算子とは異なる場合がある。主な命題ファジィ論理としては、以下のものがある。これらは、いずれも命題論理(モデルはブール代数)を拡張したものである。命題論理から一階述語論理が生成されるように、上述のファジィ論理に全称量化子と存在量化子を追加すると述語ファジィ論理となる。量化された論理式のファジィ真理値について、全称量化では下限、存在量化では上限を意味する。「決定可能部分集合」や「帰納的可算部分集合」は古典数学と古典論理の基本である。すると当然ながら、ファジィ集合論にそれらを拡張するという問題が生じる。このような方向性の最初の提案は、E.S. Santos による「ファジィ・チューリングマシン」、「マルコフ正規ファジィアルゴリズム」、「ファジィ・プログラム」の提唱だった。それに続いて L. Biacino と G. Gerla がそれらの定義が適正でないことを示し、次のようなことを提案した。"Ü" は [0,1] の有理数の集合を意味する。ファジィ集合 "S" のファジィ部分集合 "s" : "S" formula_9[0,1] が「帰納的可算」であるのは、帰納的写像 "h" : "S"×"N" formula_9"Ü" が存在する場合で、それはすなわち "S" の全ての "x" について関数 "h"("x

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。