九一式魚雷(きゅういちしきぎょらい)は、大日本帝国海軍が航空機からの投下用に開発・使用した航空魚雷。第二次世界大戦における艦船攻撃に使用された。別名「九一式航空魚雷」。九一式魚雷(改2)は2点の特徴を有していた。これらによって九一式航空魚雷は、高度 20m、速度 180 ノット (333km/h) で、しかも浅い軍港で発射できるようになった。さらに、九七式艦上攻撃機の水平最高速度 204 ノット (378km/h) を超える加速降下雷撃で、荒れた海でも発射できるようになった。直径は、450mm (17-3/4in) であった。兵器として制式採用された九一式魚雷に実際に使用されたのは、本体設計が5形式、頭部が5形式あり、頭部重量 213.5〜526.0kg、搭載炸薬量 149.5〜420.0kg、水中走行速度 42 ノット (77.8km/h) で射程距離は 2,000〜1,500m だった。九一式魚雷は大日本帝国におけるほぼ唯一の航空魚雷だった。したがって、単に航空魚雷といえば九一式魚雷のことを指した。他の型式の魚雷である九三式魚雷と九五式魚雷は水上艦艇および潜水艦で使用され、九七式魚雷は甲標的で使用された。ここに示すのは、九一式航空魚雷の各形式一覧である。後期型は重量増加により射程が短くなったが、雷撃は基本的に近距離射出するため、問題とはならなかった。九一式頭部改3には、対応する最高射出速度により改3と改3改があった。頭部改7は頭部重量が増大し、浅海面雷撃には対応しなかった。九一式魚雷は1932年(皇紀2592年)12月1日付内令兵第七十二号により兵器採用されたが、この時から真に実用可能な航空魚雷に辿り着く迄の試行錯誤が続いた。改2型以前の九一式航空魚雷は発射に慎重さを要する魚雷だった。脱落式の空中姿勢安定木製尾翼「框板」を備えてはいたものの、射出速度 130 ノット (240km/h)以下、高度 30m以下という制限があり、実際に飛行速度が遅ければ遅い程、魚雷の走行結果は良くなった。複葉機や固定脚(三菱九七式艦上攻撃機)の飛行機でも雷撃実用性がある、と見なされたこともあった。機動部隊の第一航空戦隊に所属する九七艦攻隊は、その当時世界各国の海軍航空部隊(実質的にはアメリカ海軍航空隊および大英帝国海軍航空隊)が行っていた伝統的雷撃法で訓練していた。航空廠の開発チームは、航空魚雷の最大射程は 2,000m (1.8 海里) 以内なら可能と結論付けた。雷速が40ノットで、目標艦船が速度30ノットで急激な回避行動を行うとすると、命中させる為には目標にできるだけ接近せねばならなかった。「第2射法」と呼ばれた方法は、予想された猛烈な対空砲火の中を、速度 100 ノット (185km/h) 、高度 10m で飛行して浅い軍港で雷撃を行う内容だった。当時最新型の中島九七式艦上攻撃機では、この雷撃法で飛行することは困難が伴ったため、脚とフラップを下ろして空気抵抗を増やして飛行しなければならなかった。彼ら雷撃隊の搭乗員たちは、水深 10m と浅い鹿児島湾で1941年8月終盤まで、この射法の訓練をしたものの、この射法では雷撃成功には確信がもてなかった。1941年8月に、安定器を備えた九一式魚雷改2の最初の10本のプロトタイプが航空母艦「赤城」の雷撃隊に供与され、極めて良好な結果を示した為、直ちに全雷撃隊は「第1射法」に切り替えた。脚とフラップを収納した状態で、より高速な 160 ノット (約 300km/h) 、高度 20m で雷撃を行う方法になった。1942年5月8日朝の珊瑚海海戦において、第五航空戦隊の九七式艦上攻撃機隊は日本時間 0910 にアメリカ軍の防御陣を突破して USS「レキシントン」(CV-2) と USS「ヨークタウン」 (CV-5) に全速降下していった。小型のヨークタウンは飛行隊長の島崎少佐が率いる4機1隊に雷撃されたが、4本の魚雷をすべて回避した。1.5倍の巨大なレキシントンには航空母艦「瑞鶴」から1隊、航空母艦「翔鶴」から2隊、合わせて3隊、計14機の九七式艦上攻撃機が集中し、鶴翼に開いた攻撃陣形から攻撃を受け、最後の2本が左舷に命中した。これらの九七式艦上攻撃機は従来の雷撃機がしてはならないはずの、最高速度 204 ノット (378km/h) を超える全速で接近してきた。CV-2 の艦橋にいたF.C.シャーマン艦長は、魚雷を抱いたまま船の近くに撃墜された九七式艦上攻撃機 (B5N2) を観察し、その尾部がなにか箱型形状のもので覆われているのを見た。彼はこれが B5N2 が航空魚雷を高速度で雷撃できる理由だと報告した。速度 300 ノット (556km/h) の高速度での雷撃では、投下高度は最高300〜350m に制限された。この高度制限は、水面入射時の二重反転スクリューのプロペラ翼の強度限界による制限だったが、これは横須賀空でテスト中に、陸上爆撃機「銀河」 (P1Y1) から高速かつ高度 100m で射出された魚雷が、スクリュー翼のひび割れの為に進路を曲げて疾走した事による。高速度雷撃では、最低高度制限も設定され、40m に設定された。高度 30m 未満で投下されると、水面上を飛び跳ねる可能性があった。1944年3月に陸軍航空の操縦士、酒本英夫少佐(航士43期)と大塚隆明大尉(航士53期)は横須賀海軍基地において、高機動性を誇る双発爆撃機 キ-67(四式重爆撃機)を使って「高速雷撃射法」を確立した。彼ら自らが行った 300 回のテストから射出諸元を導出した。大日本帝国海軍はこれを制式射法として承認した。電波高度計 タキ13 を装備した キ-67 は1トン魚雷を抱いて高度 1,500m から水面レベルまで急降下し、2種類の形式で射出する。雷撃隊搭乗員の戦死率は非常に高く、第二次大戦初期で 30〜50 %、太平洋戦争の終盤においては昼間攻撃作戦では 90〜100 %の戦死率に達したため、雷撃戦術に工夫を必要とした。熟練搭乗員達は生き残りの為に戦術を工夫した。左右に横滑りさせて飛行経路を変化させながら、射点に到達するまで射弾を回避したのも、その一つである。天山 (B6N2) が USS ヨークタウン (CV-10) に雷撃をした場面の一連の写真は典型的な雷撃戦術を示している。この写真(The World War II Multimedia Database 2011年6月1日時点のアーカイブ)では、この天山は自機の左、写真では右方向に向かって横滑りしていて、対空砲火の炸裂煙は機の右、写真では左に外れている。この機は、1944年2月17日の夕暮れにトラック諸島の沖合いで反撃に出撃した機であり、第二航空隊の雷撃隊所属の天山4機のうちの1機である。4機のうち2機は帰途不時着し、乗組員は救出された。残り2機は無事基地に帰着した。1923年ころ、成瀬正二技術大尉(当時、終戦時は少将)は英国の工廠を見学し報告、日本の航空魚雷開発を最初から担当する事になった。 1930年には、九一式航空魚雷は成瀬少佐(当時)が開発を開始し、1931年に兵器として制式採用された。ただし、九一式航空魚雷の初期型には、本体構造に脆弱性があった。愛甲文雄大尉(当時、終戦時は大佐)は1931年以降、兵科将校として九一式航空魚雷の開発チームを推進する責任者に指名された。愛甲大尉は航空魚雷を開発するための人的資源を集め、主にハード面の実験を指揮し、原因は解明するように命令し、安定器(ロール安定制御システム)が必要と判明した時には是非なく開発するよう命令した。彼は、九一式航空魚雷を自分が開発した偉大な業績として誇っていた。また、成瀬少佐からの兵科将校の追加を、という強い要望をうけて、愛甲少佐は同期の片岡政市少佐(当時、のち大佐)を招き、制御機構面の指揮担当として追加した。 成瀬正二少将の指揮下で、かつて海軍空技廠で一連の九一式航空魚雷を開発した人々は、後に「九一会」として親交を保った。広田晴男 元少佐、小平(松縄)信 元少佐、家田 元工長、野間 元技師、前田盛敏 元技師、市川英彦 元大尉、川田輝幸 元海軍技術学生などである。1936年ごろ、空中姿勢安定用の脱落式木製尾翼(「框板」)が開発され、空技廠雷撃科嘱託、村上少将により、複葉機の一〇式艦上雷撃機を使って直径 45cm の旧型四四式二号魚雷で雷撃成功を確認し、九一式航空魚雷では120 ノットでも安定して雷撃が成功することを確認した。航空魚雷開発チーム・メンバーたちは1936年に九一式航空魚雷を改めて改1とし、「框板」に対応させた。チームは翌1937年に、高度 500m と 1,000m で「緩衝器」付きの航空魚雷の投下テストをデモンストレーションした。航空魚雷開発チームは、中止されていた九一式航空魚雷の開発を再開した。1938年には、九一式航空魚雷は脆弱な本体を強化対応した改2になった。1940年秋には、雷撃隊は海軍大演習に参加して戦技を示し、海軍首脳に深い印象を与えた。 九一式航空魚雷は、初期の加速度制御機構を備えたロール安定制御システムで称賛を得た。九一式航空魚雷は、すでに脱落式の空中姿勢安定木製尾翼「框板」を備えていて安定した雷撃が実現できていた。しかし、魚雷の射出速度が 130 ノットから 180 ノットに引き上げられたので、転動(ローリング)問題が出現した。単なる安定板による減衰方式ではなく、ローリングを舵によって安定させる加速度制御システムが必要となったのである。安定器(ロール安定制御システム)が導入される以前は、九一式航空魚雷は、当時の他の航空魚雷がもっていたのと同じ、ある深刻な問題を抱えていた。荒っぽく高速で射出されると、魚雷は空中で2回転以上することがあった。大波の立つ荒れた海面に突入するとき、魚雷はさらに激しい衝撃を受け、スピン回転を受けることがあった。そのような魚雷は走行方向が逸れたり、浅海面では海底に突き刺さったり、100m を超える水深に沈下して水圧で壊れたり、水中から飛び上がったり、水面を飛び跳ねたりし、反対方向に走り出すものも出た。確実な雷撃は、一部の精鋭搭乗員だけが静かな海で行うことができた。連続回転している魚雷は制御を失う。ジャイロスコープや深度計が正常に動作していても、そのような激しい外乱を受けた状態の魚雷は、それに比較して緩やかな軌道修正動作を目的に作られた尾部の舵では走行方向を制御することができない。一旦魚雷が長軸をまわる速い回転を起こすと、水平舵と垂直舵があるべき位置からずれたり、上下反転したりして、結果的に暴走を引き起こした。1939年、広田大尉(当時)の率いるエンジニアと科学者たちは、数年にわたるテストのデータによる数値解析から、一つの結論を導き出した。航空魚雷には加速度制御(当て舵)によるロール安定制御システムが必要であり、さもなければその航空魚雷は転動し暴走するだろうという結論であった。加速度制御は、当時としては不可能と思われた。この問題が解決されないまま、2年間が経過した。航空魚雷の設計におけるブレークスルーは、まず1941年春に空技廠の家田工長によって最初に発明された安定器(ロール安定制御システム)だった。家田システムの実験に入って10日後に、海軍技師の野間が別のシステムを発明し、1941年夏に最終テストされた。こちらもまったく同じ動作をするが構造は異なっていた。試作機のテスト期間に、後者のシステムの方が応答タイムラグが少ない点で、より良いと判定された。この結果、生産された九一航空魚雷兵器には野間システムが採用された。その装置は、単なる小さな機械式の空気バルブ構造物が、魚雷本体後部の左右にある小さな安定舵(ロール・ラダー)を制御しているだけのように見えたが、実は航空魚雷技術界の技術革新だった。九一式航空魚雷ははじめて、荒れた海で使えるようになった。安定器は、魚雷の両側に設置された安定舵で魚雷の転動(ローリング)を安定化するための操舵制御システムである。安定舵は飛行機の補助翼(エルロン)と同じく左右ひねり動作を生じ、±22.5°の角度範囲で動作する。魚雷が回転運動中か、所定の角度までロールしたとき、安定器は、中立方向に戻すように安定舵を修正操舵する。魚雷が中立の 0°に向かってロールを戻してくる途中で、安定器はこの角速度の向きとロール収束範囲を検知して、魚雷が中立に戻る角速度にブレーキをかける(つまり「当て舵」動作をする)。変位角速度の範囲、角速度変化(加速度)に応じて選択的に当て舵を操舵する部分は角加速度操舵方式となる。彼ら海軍のエンジニアたちは、船を操舵することに例えてこの動作を「当て舵する」と名付けた。安定器付き九一式航空魚雷改2により、沈降深度 20m 以下で雷撃を実現できるようになった。実際には、機動部隊の第一航空戦隊所属の一握りの雷撃隊精鋭パイロットたちは、沈降深度 10m 以下で浅海面雷撃することができた。安定器によって、浅い軍港に停泊中の軍艦を雷撃可能にしただけではなく、全速力で荒れた海の大波の中を進む軍艦を雷撃可能にした。安定器によって、九一式航空魚雷はさらに重い頭部を搭載することが可能になった。初期の九一式頭部と九一式頭部改1はそれぞれ、炸裂火薬量 149.5kg の頭部重量 213.5kg を搭載しただけだったが、改2では炸裂火薬量 204kg の頭部重量 276kg を搭載した。頭部改7は双発機搭載用で、炸裂火薬量 420kg の頭部重量 526kg を搭載した。これらは、第2次大戦中に米海軍軍艦が防御装甲をどんどん強化してきたので、その装甲を貫通するように設計された。九一式航空魚雷は実質的に外洋で作戦に使える最初の航空魚雷になった。実験に基づいた科学的実証が開発を導いていた。長さ = 1,460mm (57-5/8in)起爆装置は慣性起爆である。水面下を所定距離を走行した後に安全装置のロックが解除される。魚雷が命中すると、頭部内後部にある重量物の慣性衝突が炸薬を点火する。この内部の重量物による点火でなければ、炸薬は爆発しない。20mm 炸裂弾を打ち込んだテストでも、安全ロックされた状態の炸薬を爆発させることはできなかった。 頭部には、水面への突入の強烈な衝撃に対抗するために、外殻前部の内部下側を強化する「T型」とよばれた帯状部品がある。実際の量産品では、この頭部は内部殻の前底部に5本の強化ストラップバンドを必要とし、星型を下半分に切ったような、すなわち文字 T と文字 Λ を重ね合わせ溶着したような形で補強された。また、頭部の前上部には2本の細かなスティッチラインが並んでいて爆発効果を上げた。大戦終盤期には先端にフックを2つ設けた頭部もあった。雷撃では、魚雷は高空から加速降下してくる航空機から射出される。高度 100m で射出された航空魚雷は、マッハ 0.5 近い速度で水面に激突し、100 G を超える強烈な衝撃を受ける。高速な雷撃に対応するために、頭部補強が必要とされた。L = 1,068mm (42-1/8in)気室は薄い殻の円筒で、ニッケルクロムモリブデン鋼でできている。この強靭な合金鋼は、もともと戦艦の装甲板用に開発された。気室には圧力 175〜215 気圧 (2,500〜3,000psi) の圧縮通常空気が充填され、この空気で石油燃料を燃焼して駆動力を発生する。水中を 2,000m 走行する間に、圧力は約 50 気圧 (710psi) に減る。日本製の魚雷の気室は、円筒状の金属柱の内部を削り出して気室に加工していた。したがって、気室が魚雷の全部品の中で最高価格の部品であった。欧米では、気室は金属板を円筒状に溶接加工していた。L = 733mm (28-7/8in)前部浮室(フロート部)には、真水タンク、燃料石油タンク、深度計がある。深度計は、この区画の内部底面に配置され、水中深度を検出する。水深の変位レベルを検出して尾部の水平舵(昇降舵)を比例動作させ、その結果、魚雷は水中で水平走行を保つ。L = 427mm (16-7/8in)この区画には、エンジンを冷却するために水が自由に入ってくるように作られている。起動スタータ、「調和器」とよばれる圧力レギュレータ、ウェットヒーター式燃焼室、主エンジン、そして水平舵(昇降舵)制御器が内部にある。起動スタータは、魚雷が水面に落下する間、1個は垂直の縦舵操舵用の、もう1個は両側の翼ラダーが付いている安定舵用の、それぞれのコントローラを起動する。水平舵(横舵)は上げ一杯の位置に固定されている。起動スタータは、魚雷が水面を打ったとき推進の主エンジンを起動する。航空機に搭載されている間は、ロックとして太いボルトがスタータに挿し通されている。魚雷が投下されるとこのボルトは引き抜かれ、ボルトは航空機の機体の下側に残る。「調和器」と呼ばれるエンジン吸気部の圧力レギュレータ(降圧器)は、2段構成になっていて、それぞれに圧力調整弁が付いている。これは気室の高圧空気の 215〜50 気圧 (3,000〜711psi) を、10 気圧 (142psi) 程度の一定圧力に降圧調整する。気室の圧力は水面下を走行するにつれて低下するが、圧力レギュレータは一定圧の空気をエンジン吸入口に供給し、速度 43 ノット (80km/h) を保つ。ウェットヒーター室(加熱室)は耐熱鋼でできている。九一式航空魚雷の各種は、第2次大戦中の他のほとんどの魚雷と同じくウェットヒーターエンジンを使った。一般的なウェットヒーター燃焼方法は、魚雷のエンジンの燃焼効率を劇的に改善した。エンジンは、ウェットヒーター部(加熱部)の燃料石油と高圧空気の混合ガスに真水をスプレーし、加圧水蒸気燃料ガスを生成してエンジンに供給する。高圧石油燃料ガスは 800℃ で燃焼する。燃焼ガスに真水の霧を噴霧すると、水蒸気爆発を起こし、石油燃料が完全に燃焼する。主エンジンは、8気筒星型単列ピストンエンジンである。尾部水平安定板の水平舵(昇降舵)は、前部浮室(フロート部)にある深度計からの接続ロッド機構によって操舵される。L = 1,002mm (39-1/2in)1本のドライブシャフトが尾部区画に向かって貫通している。この後部浮室(フロート)区画には、機械オイルタンク、縦舵操舵器、安定器、そして左右両側に安定舵(ロール・ラダー)がついている。機械オイルタンクは、後部浮室の中央に配置されている。縦舵操舵器(縦舵コントローラ)は一般的なジャイロスコープによる操舵システムであって、縦舵を操舵して魚雷の長軸をジャイロが検出する方向にまっすぐに進める。このジャイロスコープは魚雷が航空機から投下されるときに回転を開始する。ジャイロは2重リングで自由に動くように支持されている。「安定器」と呼ばれたロール安定制御システムは、空気バルブによる機械式の制御システムであって、ロールを制御するための設計には数値解析を必要とした。この制御システムのジャイロスコープは、ロール角度を検出し、コントローラは魚雷のロール傾きを正立位置にするように制御する。ジャイロスコープ付きの安定器は、航空魚雷の両側の安定舵(ロール・ラダー)を ±22.5°の範囲で操舵できる。魚雷がロールすると、この安定器は飛行機の補助翼(エルロン)のように安定舵をひねり修正操舵して、反対向きのロール回転モーメントを生み出す。魚雷が 10°を超えて傾き、正立位置に向かって戻ってくるとき、制御空気バルブの中の、この小さな機械式制御システムが機能を発揮する。魚雷が ±10°の範囲内に戻ってくるとき、このコントローラは逆方向に安定舵を切り換える「当て舵」動作をして、修正方向のロール回転にブレーキをかけ、ロール戻りの行き過ぎを防ごうとする。しかし、そのまま正立位置を通り過ぎて反対側の傾きになる。回転は反対側のある傾きで停止して、再び正立位置に向かってロール傾きを戻す。このとき安定器は傾き変化を検知し、安定舵を当て舵操作して回転にブレーキをかける。魚雷は正立位置を通過し、またある傾きでロールが止まる。これの繰り返しになり、ちょうど空気クッションがバウンスして床に落ち着くような動きをする。動きは続くが、空中で 2〜3.6 秒のうちにロール角度は正立位置の微かなロール揺れ振動範囲に収束する。実際のテストでは、爆弾倉から落下していくテスト中の魚雷を真上から撮影した高速度撮影ムービーフィルムを解析することによって、この制御システムの動作が観察され、有効性が証明された。この安定器は、水中突入後の走行結果によって、水面下でも有効に機能していることが示された。安定舵(すなわちロール・ラダー)は魚雷の両舷外側に付いていて、修正操舵によって、魚雷のロール傾きとは反対回りのロール回転モーメントを生み出す。それぞれのラダーは 8cm 角の小さな四角い金属翼である。左右両側の安定舵は、空中でも十分な操舵力を得るために、着脱式の木製空中安定翼で覆われていた。安定翼は、魚雷が水面に突入したときの強い衝撃で壊れ去るようになっていた。安定翼は、大きさ 12cm × 20cm (4-3/4in × 7-7/8in) で、左右両端を3本ずつのアルミ製シェアリングピンで留められた。残る本来の金属製安定舵は、水中駛走中にも操舵されて、水中突入時に発生したロール回転運動を減衰させた。L = 530mm (推進スクリューのハブ先端まで) (20-7/8in)水面下を走行する魚雷を直進させるため、ベベルギアを使って同軸反転2重4枚羽根スクリューを駆動する。尾部区画は、垂直安定板と水平安定板を十字型に備えている。それぞれの安定板(フィン)はその後方に舵をもっている。水平安定板と水平舵は魚雷の長軸方向の幅が比較的広く、操舵は比例動作であった。他方、垂直縦安定板は比較的小さく、縦舵は安定版の後縁全体にわたるが、そのスパンは極めて狭い。縦舵の操舵は、右一杯/中立/左一杯の3状態をそれぞれ所定時間継続させる積分動作であった。航空魚雷尾部の金属製安定板は、空気力学的に空中姿勢を安定させる木製尾部安定板「框板」で覆われる(図)。これは1936年に導入された。木製尾部安定板は水中突入時の衝撃で脱落する。単発の艦上雷撃機(九七式艦上攻撃機、艦上攻撃機天山)の場合は、箱型形状の「九七式小型改框板」が使われた。双発の陸上攻撃機(九六式陸上攻撃機、一式陸上攻撃機、キ-67 四式重爆撃機)の雷装の場合は、尾部安定板を延長した十字型形状の「九七式框板」が使われた。空気抵抗は小さく良好だが、機体下部の爆弾倉に空間的余裕が必要になった。陸上攻撃機の雷撃装備の場合、爆弾倉内部の気流を整流するためにもう一枚の板が必要とされた。爆弾倉に巻き込んで入ってくる乱流が投下される魚雷の空中挙動に乱れを生じさせるのを防ぐためだった。1944年以降はより高速、低空での雷撃に対応するため十字型形状で各安定板の面積を増した「四式框板」が採用され、新型の銀河や流星のほか、天山やキ-67などでも九七式框板に替わって用いられた。魚雷は 160 ノット (300km/h) 以上の速度で空中に投下され、放物線の軌跡に沿って水面に自由落下していく。空気力学的に設計された木製尾部安定板「框板」は空中の頭上げ下げ運動を安定化し、水面へ突入する軌跡に沿わせる。構造は簡単でよく機能した。スクリューは同軸反転2重回転スクリューで、それぞれのスクリューは4枚のプロペラ羽根をもつ。各スクリューの製造は、四角い合金鋼からの鍛造で、最初に太い十字型にされ、次に中心をパンチで打ち抜かれる。1トン、3トンの鍛造によって4枚羽根が形成される。推進部はコンパクトに設計され、前部スクリューと後部スクリューは 5mm 間隔で配置されている。スクリュー強度に関連する事故が起きたことがある。銀河が高速降下で高度 100m から雷撃テストを実施していたとき、魚雷の走行方向が途中で曲がってしまった。水面での強烈な衝撃によって、後部スクリュー羽根の1枚に打たれた前部スクリュー羽根の1枚にクラックが発生したためだった。航空魚雷開発チームメンバーは、加工前の焼き鈍し、加工後の焼き入れ、焼き戻しの重要性を再確認し、そのように実施された。焼き鈍しでは、金属塊は 700℃ に2時間置かれた後、石灰粉の中で冷却される。焼き入れでは、850℃ に1.5時間置かれた後、油の中で冷却される。焼き戻しでは、180℃ の油の中に2時間置かれた後、空気中で冷却される。安定器(ロール安定制御システム)は、ジャイロからの比例制御を受けて、魚雷の両側に配置された安定舵を操舵する、1組の空気バルブシステムである。安定器は、ジャイロスコープ、本装置(主コントローラ)、補助バルブ(出力ブースター段)で構成される。最も重要な部分は本装置である。ジャイロスコープは、ロール角度をリアルタイムに検出する。そしてこのジャイロは、本装置の内部中心を左右にスライドする棒状のパイロット弁(パイロット・バルブ)にロール傾き検出角度に比例するプッシュプル式制御操作を入力する。本装置(主コントローラ)は、操舵用制御圧力空気の1入力/2出力ポートをもち、魚雷の転動(ロール回転)に平行に配置される。本装置の中心軸に配置されたパイロット弁(パイロット・バルブ)にジャイロスコープから制御操作入力された魚雷のロール角度に対応して、ロール傾きを修正操舵する回転側の制御圧力空気の出力ポート(バルブ)を排他的にオンにする(開く)。本装置はさらに、修正操舵が効いて魚雷がロール傾きを正立位置に戻してくるときに、その角速度方向とロール角度の減少に対応して、修正操舵にブレーキをかける「当て舵」操舵(修正方向と逆向きの操舵)を行うため、それまでとは逆回りの回転側の制御圧力空気の出力ポートを排他的にオンにする。この結果、ロール角速度の時間微分である加速度を検出して制御することになる。本装置は、円筒中空シリンダー形状のケースと、その気密状態中で所定の行程(ロール角度に比例する)を空気圧によって左右に滑動する円筒形重量物の滑動弁(スライダー・バルブ)、この滑動弁の中心軸を左右にプッシュプル操作されて動作するパイロット弁(パイロット・バルブ)、の3部位から構成されている。滑動弁(スライダー・バルブ)は1入力2出力の構造をもつ円筒形状の重量物であり、ケース内部の両端壁と自由に動く滑動弁両端部との間に空気室ができる。滑動弁の芯となる中心軸の孔にはパイロット弁が挿しこまれていて、傾き検出したジャイロからプッシュプル(押し引き)操作されると、滑動弁の制御圧力空気の2出力ポートのうち片方の出力経路が塞がれ、他方の出力経路だけが排他的に開き、開いたオン側の出力ポートからは時計回り/または反時計回りの操舵をする制御圧力空気が出力される。滑動弁(スライダー・バルブ)には内部に「通空気孔」とよばれる1対の空気補助孔が設けられている(説明動画)。この通空気孔が補助弁の働きをすることによって、重量物の滑動弁はプッシュプル操作されるパイロット弁の動作にやや遅れながら追随して、ロール角度に比例して左右に動く動作をする。この通空気孔から、オン側の出力ポートから分流した圧力空気がシリンダー形状ケースの片側端部に吹き込み、重量物の滑動弁をケース端壁から空気圧で押し出す。他方で押し込まれる側のケース端部の空気は、もう一方の通空気孔からオフ側の出力ポートを介して空気抜き孔から排出される。重量物の滑動弁は、円筒中空シリンダー形状のケース内部を、密着状態で魚雷のロール角度に比例して左右に滑らかに動くが、その動作可能行程を魚雷の ±10.0°の範囲以内相当までに制限するために、ケースの構造寸法によって滑動弁のケース内滑動距離を制限している。このため、±10.0°の範囲を超えたロール状態のときには、この重量物の滑動弁はケース端部に密着したまま、したがってロール傾きを修正する操舵出力ポートをオン状態にしたまま、魚雷のロール角度が正立 ±10.0°の範囲に戻ってくるのを待っている。正立 ±10.0°の範囲に戻ってきたときには、傾きは減少していき、ジャイロが操作するパイロット弁はそれまでとは逆方向に進むので、それに追随する円筒形重量物の滑動弁は逆方向に追随して働き、それまでの修正操舵出力ポートの回転とは逆回りの、もう一つの修正操作出力ポートを排他的にオンにする。これによって、魚雷のロール傾きが ±10.0°の範囲相当に戻ってきたときに「当て舵」(それまでとは逆回りの操舵)をして、ロール傾きを戻す回転角速度にブレーキをかける。この当て舵操舵はジャイロがロール角度に比例してパイロット弁を再度反対方向に操作入力するまで続くので、結果的には魚雷のロール角度は、パイロット弁の操作入力と重量物の滑動弁の空気圧応答のわずかな時間遅れ(タイムラグ)を含んで、左右に微かなロール回転を残して揺れながら空中・水中を直進し、次第に正立位置に近づくように修正されていく。原理的に完全な傾き角度ゼロへの収束にはならず、わずかな揺れは残り、修正操舵の時間遅れ(タイムラグ)も残るが、航空魚雷の安定制御用として実用上支障なく、それ以上の理想追求の最適化は不要なことも確認された。補助バルブ(出力ブースター段)は、2入力/2出力ポートをもつ。この出力ブースター段は、1対の空気遮断バルブである。本装置の2つの出力ポートの後段に縦列接続(カスケード接続)されていて、2つの強力な高圧制御空気を排他的に切り替え、出力の1つは時計回りに/もう1つは反時計回りに安定舵をひねり駆動する。このブースター段は、激しい衝撃を受ける状況で本装置を衝撃から守り、操舵を確実にするために設けられた。成瀬正二少将は戦前から太平洋戦争終了まで、彼のクラス講義で次のように説明していた。航空魚雷の運動方程式は、連立常微分方程式で表現できる。次式で空中での魚雷の頭上げ動作がモデル化された。"Eq."6 の "bVω" は、ダンピングモーメントであり、"b" は次式で定義される。ここで、魚雷の角度モーメントは、次式の頭上げ挙動である。"l" の値は、箱型の木製安定尾翼のあり/なしによって異なる空気抵抗モーメント係数として、風洞実験で測定した。ここで、各係数は次のとおり:この高次連立常微分方程式は、解析解を求めることはできないが、数値解析で解くことは可能である。"Eq."1 〜 "Eq."4 を所定の境界条件下で解くことにより、"t
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。