LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

交代結び目

交代結び目(こうたいむすびめ、Alternating knot)とは、位相幾何学の一分野である結び目理論において、成分が交点の上下を交互に通るような射影図を持つ結び目のこと。絡み目の場合は交代絡み目(Alternating link)という。交代結び目を含んだより広い概念である交互結び目(Alternative knot)とは異なるが、Alternating knotに対して交互結び目という訳語がふられることもある。結び目の射影図において、下の三葉結び目の射影図のように、成分が交点の上下を交互に通るような射影図を交代射影図(こうたいしゃえいず)または交代図式(こうたいずしき)という。絡み目の射影図の場合は、各成分について交点の上下を交互に通っていれば交代射影図という。交点がひとつもないような射影図も、交代射影図と考える。交代射影図でない射影図は非交代射影図という。交代射影図を持つ結び目(絡み目)は交代結び目(交代絡み目)といい、非交代射影図しか持たない結び目(絡み目)は非交代結び目(非交代絡み目)という。例えば三葉結び目や8の字結び目は交代結び目であり、ホワイトヘッド絡み目やホップ絡み目は交代絡み目である。交点数が比較的少ない結び目は交代結び目であることが多い。例えば交点数7以下の素な結び目はすべて交代結び目で、交点数が最も少ない素な非交代結び目は8交点のものとなる(下図はそのうちの1つである)。また、以下の3つはテイト予想と呼ばれ、多項式不変量を使って証明された。テイトの予想の解決の際に系として以下の性質の成立も証明されている。交点の上下を1回だけ入れ替えることによって交代射影図になるような結び目や絡み目の射影図を概交代射影図(がいこうたいしゃえいず)という。また、非交代結び目(絡み目)でかつ概交代射影図を持つ結び目・絡み目を概交代結び目(がいこうたいむすびめ、Almost alternating knot)・概交代絡み目(がいこうたいからみめ、Almost alternating link)という。上の節で示した8交点の結び目は概交代結び目である。この概念はさらに一般化することができる。つまり "n" 個の交点の上下を入れ替えると交代射影図になるような射影図を持つが、"n"-1 個の交点を入れ替えると交代射影図になるような射影図は持たない結び目(絡み目)のことを概n交代結び目(概n交代絡み目)という。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。