LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

準粒子

準粒子 (quasiparticle) とは、その振る舞いがある系の中で一つの粒子として特徴付けることのできる離散的な現象の集団を言う。大雑把には、"ある粒子とその粒子の局所環境への効果を合わせたもの"と定義することができる。物質中の粒子間には複雑な相互作用が働いている。その相互作用を切って自由粒子として扱うことは原理的に不可能である。逆に言えば、相互作用によって粒子の集団運動がつくる励起は生まれる。よって物質中では粒子という概念自体が必ずしも自明ではない。ところが、複雑な相互作用があるにもかかわらず、あたかも特定の運動量やエネルギーを持った自由粒子が独立に運動しているように振る舞い、着目していない粒子が背景(真空)であるように扱える場合がある。このような粒子は相互作用の効果を繰り込んだものであり、「相互作用の衣を着た粒子」という意味で「準粒子」と呼ばれる。準粒子が系に及ぼす効果もまた準粒子である。準粒子の全体的な性質は単一の自由粒子のように振る舞う。この概念は凝縮系物理において最も重要である。これは量子多体問題を単純化できると知られている数少ない方法の一つである。同様に、これは他のあらゆる数の多体系にも適用することができる。多体量子力学における準粒子は、系の低エネルギー励起状態(基底状態エネルギーに非常に近いエネルギーを持つ状態)の一つである。この状態は素励起状態と呼ばれる。準粒子間の相互作用は十分な低温では無視することができるので、基底状態近くの低エネルギー励起状態のほとんどは複数の準粒子が存在する状態として見ることができる。個別の準粒子の性質を調べることによって、流動特性や熱容量など低温系についての多くの情報を得ることができる。多くの多体系には二つの型の素励起が存在する。準粒子のアイデアはレフ・ランダウによる論文のフェルミ液体が起源である。これは元は液体ヘリウム3の研究のため発明された。この系での準粒子と場の量子論における衣を着た粒子の概念の間には強い類似性が存在する。ランダウ理論の力学は平均場型の運動論的方程式によって定義される。これに類似する方程式としてブラソフ方程式は、いわゆるプラズマ近似によるプラズマの記述について有効である。プラズマ近似は、荷電粒子は他の全ての粒子によって集団的に生成される電磁場の中を運動すると見なし、荷電粒子間の硬衝突 (hard collision) は無視される。平均場型の運動論的方程式が系の妥当な一次記述であるとき、二次補正はエントロピー生成を決定し、一般的にボルツマン型の衝突項の形を取る。この衝突項は、仮想粒子間の"遠い衝突"だけを表す。事実上、全ての平均場型の運動論的方程式および全ての平均場理論は準粒子の概念を含む。準粒子と言う言葉の使用は曖昧であることに注意が必要がある。ある筆者はこの言葉を実際の粒子と区別するために使い、またある筆者 (上のパッセージはこちらの意味で使っている) は集団励起に対する単一粒子に類似する励起を記述するために使う。これら両方の定義は互いに排他的で、前者の定義では"現実の粒子ではない"集団励起が準粒子と見なされる。準粒子の集団的性質から生じる問題は科学哲学でも議論されてきた。とりわけ、準粒子の同一性条件との関係、および、例えば 実体的実在論(または、対象実在論、存在者実在論)の標準によって、それらは"現実"と見なせるのかという議論が焦点である。ここでは準粒子と集団励起の例について記述する。最初の節では通常の状態の下で様々な物質内で起こる一般的な現象について、次の節では特別な文脈で起こる現象例について記述する。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。