LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

気動車

気動車(きどうしゃ)とは、人員・荷物もしくは貨物を積載する空間を有し、運転に必要な動力源として内燃機関や蒸気機関などの熱機関を搭載して自走する鉄道車両である。現在の気動車は、動力として一般に内燃機関の中でも熱効率と安全性に優れるディーゼルエンジンが用いられている。そのため、日本では「ディーゼル動車」または「ディーゼルカー」(Diesel Car, DC)、「汽車」 などとも呼ばれる。対して、欧州では動力分散方式の車両を「マルチプル ユニット」と呼ぶことから、気動車を「DMU」(Diesel Multiple-Unit) と称する。また「レールカー」(Railcar) とも呼ばれる。以下、特記ない限り、主に日本国内の事情に基づいて記す。電車と同様に動力分散方式の鉄道車両に分類される。一両ごとに蒸気もしくは内燃機関を搭載し、単独または複数両の車両で運行される。複数両の車両を連ねる場合には、かつては動力車一両ごとに運転手が乗務してそれぞれの車両を操作していたが、現在では先頭車の運転台から一括して制御する総括制御方式が一般化している。気動車の構造はその種類により異なる。このほか、動力を持たない気動車として付随車(気動付随車)と制御車(気動制御車)があり、動力をもつ気動車とともに使用される。詳細は、気動車・ディーゼル機関車の動力伝達方式の項を参照。車体は、床下に架装されるエンジンと変速機、燃料などの重量や動揺に対応するため台枠強度を上げてあること、遮音・吸音に配慮されていること以外には一般的な客車や電車と大きく変わるところはない。出力面での制約を補うため、概して軽量化への志向が強い。日本国内では、古い時代の基準でホームの高さが低いままの地方線区での使用が多く、乗降口にステップを備えている車両が多い。現在営業運行に供されている日本の気動車では、ディーゼルエンジン以外の熱機関を搭載したものは皆無である。過去においては、明治時代末期から戦後間もないころまでは蒸気動車があったほか、大正時代から1950年代まではガソリンエンジンを動力とする「ガソリン動車」(「ガソリンカー」とも)も存在したが、いずれも経済性・安全性などの面から廃れた。なお、ガソリン動車は戦後すぐに置き換えが進み、日本においては1969年の磐梯急行電鉄廃止に伴い全廃されている。ガソリンカー廃止のきっかけとなった事件については西成線列車脱線火災事故を参照。またガスタービンエンジンを搭載した「タービン動車」(「ターボトレイン」とも)も研究され、1960年代以降アメリカ・カナダ・フランス・革命前のイラン(フランスより輸入)などで実用化されたが、日本では燃費の悪さと甲高い騒音、故障の頻発が嫌われ、さらにオイルショックにも見舞われたため、キハ07 901、キハ391-1の2両が試作されたのみで、実用化されなかった。日本国外ではマイクロガスタービンを使用した新世代ガスタービン-エレクトリック式気動車が開発されつつある。なお、歴史的に見ると日本における気動車用ディーゼル機関は、4ストローク式が主流で、かつての私鉄における少数の例外を除き、2ストローク式の採用例はほとんど見られない。現在営業運行に供されている日本の気動車では、車体床下台車間に機関を搭載している。過去においても機関の搭載場所は床下が主流であったが、初期には単端式気動車のように自動車に倣って車輌端に機関を搭載した車輌も多く、車体内床上に搭載した車輌(キハニ36450形)や台車に搭載した車輌(長門鉄道キコハ10)も少数ながら存在した。サハリンの鉄道向けに日本で製造された車両も厳冬期のメンテナンス性の観点からか車体内に機関を搭載ししている。現代のディーゼル動車では軽油が用いられている。また、一部の鉄道会社においてバイオディーゼル燃料が試験的に導入されている。ガソリン動車はガソリンを使用していた。戦争の影響による石油の不足により石油燃料に統制が敷かれていた1940年代には、ガソリン機関を(終戦後はディーゼル機関も)改造して木炭ガスや天然ガスを燃料に使用した例もある。蒸気動車は蒸気機関車と同様、石炭を使用しており、機関助手の乗務による投炭作業を要した。直接的な運転経費では動力費や保守整備費用で電車に劣る反面、発電所・変電所・架線など車両を動かすための電力系統の地上設備は不要である。輸送量が小さい路線において運用される場合、総合的に見ると経済的で環境負荷も少ない。こうした特徴を利点として、東京横浜電鉄(現在の東京急行電鉄東横線)のように、電化線において変電所強化なしで列車増発を実施する目的で気動車を採用する事例が存在した。編成として機能する特急形を除き、気動車は多くの場合1両ごとでの単独運転(単行)が可能である。かつて日本国有鉄道(国鉄)の気動車は、特急形車両を除いて制御段数・制御信号及びブレーキシステムが統一、もしくは新旧互換化されており、急行形・通勤形を問わず、全ての車両で連結・総括制御運転が可能であった。そのため、国鉄形の気動車を使用した列車には、一般用のキハ40系と急行用のキハ58系の混成編成など、異なる形式による編成も少なくなかった。しかし、整備や車両運用の効率化を追及し、互換性を過度に重視したシステムは、車両性能の進化を束縛することにもつながっていた。JRへの移行後はその傾向が弱まり、ようやく走行性能面での近代化が進展することになった。また、電化設備の有無や変電所容量などの影響を受けずに走行が可能であるため、運用面でも柔軟性が高い。しかし、実際には気動車の運転免許(甲種内燃車運転免許)を有する動力車操縦者(運転士、乗務員)が必要となることや、自動列車保安装置の互換性などから、営業用の気動車が通常運行されていない区間に臨時列車として入線することは少なくなっている。他方、電化区間と非電化区間が混在する地域で機動性を求められる事業用車(「East i-D」など)での採用例は、気動車の柔軟性を生かしたものと言える。そのほか、電化区間でも閑散化が著しい場合、普通列車には編成単位の大きくなる電車でなく、小単位運用の可能な気動車を、近傍の非電化路線との共通運用によって代用する例もある。特異な例として、仙石線の陸前小野駅 - 矢本駅 - 石巻駅間は、東日本大震災の津波で電化設備の故障のため、2015年5月30日の完全復旧まで気動車を用いていた。仙石線の完全復旧とともに開通した仙石東北ラインでは、電化方式が異なる仙石線と東北本線との連絡線が未電化のため、新たに用意されたハイブリッド気動車HB-E210系が使用されている。なお、車両の動作メカニズム上、ディーゼルカーは停電などの非常時にも容易に運行可能と思われることがある。だが、現在の日本の鉄道の場合、実際には非電化路線でも、信号機・閉塞・ATS・CTC・駅舎内照明・踏切などさまざまな地上側設備に電力が使用されていることから、停電になった場合にはこれら地上側設備用の予備の電源系か、停電時にも使用可能な代替の閉塞方式が確保されていなければ、安全確保の都合上運行することは不可能である。すなわち、構造上自走は可能であるが運行自体は不能となる。電動機に比べると、内燃機関の出力重量比が小さいことは否定できず、性能面で不利な部分があることは否めない。この点は国鉄時代に顕著であり、一例としてキハ58形で自重38t, 360PS=270kWであるのに対し、117系電車モハ117形は自重44tで480kWであったが、国鉄分割民営化以降の車両では概ね解決されてきている(キハ283系においては1両平均自重42t, 710PS=530kW)。これ以上の「速い、遅い」については、搭載した電動機、あるいはエンジンの性能や歯車比の相違など、それぞれの車両の各論となり、本項で論ずるにはそぐわない。以下は主に動力源、あるいは電動機の制御方式の違いによる性能特性の違いを論ずる。内燃機関一般の特徴として、常用域でのトルク変動が少なく出力が回転数にほぼ比例して上がり高回転域で最大出力に到達するという点がある。この特性を生かすためには多段変速機を用いてエンジンが最大出力を発揮している領域を使う必要がある。また、燃料の供給を調節することでほぼ任意の出力領域で部分負荷運転に対応できる。すなわち、おおむねどの速度域でも連続力行が可能となる。他方で、内燃機関は過負荷・過回転への耐性が低く、設計最高値を超える範囲での使用はオーバーヒートや焼きつきを発生させ、最終的にはエンジンブローを招くため不可能である。負荷や回転数が許容範囲内にあっても、部品寸法の公差や組付け不良による不具合発生のリスクは電動機より高くなる。電動機で一般的に見られる「短時間定格」運転の許容幅は極めて小さいか、許されていない。このため電動機で常用される「連続」定格を越えた出力での運転が困難である。また、同様に拘束状態からの起動ができない。自動車の運転方法を見れば明らかなように、エンジンは常に一定(アイドリング)以上の回転数で稼働していなければならない。エンジンを停止した状態でギヤを噛み合わせ、その後エンジンを起動することは実用上不可能である。そのため、クラッチ機構が必要である。現代の日本の車両では起動トルクの確保と半クラッチ制御を要しない点から、変速機の1段目は全てトルクコンバーターを介している。このため「起動加速力」は電車より大きいことが多い。よって、ということが言える。国鉄時代の気動車が重鈍であったことも、おおむね上記の内容で説明される。すなわち一つには絶対的な出力不足であり、もう一つは変直2段の変速機しか持たなかったことが原因である。上述の通り、変速機の低速側は起動用のトルクコンバーター段であることは変えられない。直結段はエンジンの最大回転数(最高馬力付近)と車両の最高速度によって、比較的高速ギヤに固定されてしまう。したがって直結段に移ると途端にトルクが低下し、満足に加速しない、上り坂になれば速度が低下し変速段まで落とさなければ維持できないということが生じていたのである。これは自動車において、1速と4速しか使えない場合と、1、2、3、4速の全てが使える場合の走り方をイメージすればわかりやすい。日本の非電化鉄道路線では、1872年(明治5年)の鉄道創業から長らく蒸気機関車が牽引する客車列車を主力としていた。運転経費の低減とフリークエンシー向上に効果のある「自走式車両」の開発も試みられ、1905年に蒸気機関を搭載して自走する蒸気動車が出現したが、1910年代までに限られた両数が製造されたのみで一般化はしなかった。その後、1921年にはガソリンエンジン動力の「ガソリンカー」が営業運転を開始、列車本数頻発や運行コスト低減のメリットから1930年代には国鉄・私鉄を通じて広く普及した。ディーゼルエンジン動力の「ディーゼルカー」は日本では1928年に出現したが、エンジン技術の未発達から戦前にはほとんど普及しなかった。1937年の日中戦争勃発以降、ガソリン不足によって内燃動車の新製および運行が年々困難となった。さらに1940年に発生した西成線列車脱線火災事故により、ガソリンカーの火災危険性が指摘された。これに伴いディーゼルカーへの転換が図られることになるが、同時期、戦時体制による燃料そのものの欠乏から、太平洋戦争中および終戦直後にかけ、内燃動車の運行自体が一時衰退する。1950年以降、ディーゼルエンジン技術と燃料供給が改善されると、戦前のガソリンカーに代わってディーゼルカーが隆盛を極めることになった。特に1953年の液体式変速機実用化は、気動車による長大編成組成を可能とし、国鉄での著しい気動車普及の原動力となった。蒸気機関車牽引列車に比して優れた居住性と走行性能を生かし、気動車による準急・急行列車が出現、さらに1960年には特急列車も登場した。戦後しばらくの間、国鉄線は主要幹線でも電化率が低かったこともあって、気動車は全国で広範に用いられるに至った。1970年代までには5,000両を超える大量の気動車増備が図られ、日本国有鉄道は世界最多の気動車保有数を誇った時期もあった。しかし、同時期に主要幹線の電化が進展したことで、気動車の地位は徐々に後退する。一方で、極端な車両標準化施策及び労使関係の悪化により、気動車技術の発達も停滞した。1980年代以降、第三セクター鉄道向け軽量気動車の開発や新型エンジンの出現、電子制御式多段変速機の実用化などの技術改良から性能は大きく改善されたが、数を減らしつつあり、運用路線は主として地方の非電化亜幹線とローカル線に限定されるようになっている。現在、JR各社では亜幹線・ローカル線を中心に運用され、非電化区間は気動車の独壇場である。客車列車はすでに定期普通列車運用から完全撤退しており、少数の寝台列車がディーゼル機関車牽引で残存しているにすぎない。気動車に客車を連結して運転することも可能であり、分割民営化後も北海道の夜行列車で例があったが、現在では旅客列車では見られない。国鉄継承の旧型車両から、JR移行後新製の車両まで、多彩な形式が存在する。なお、国鉄時代には気動車の荷物車・郵便車も存在したが、JR移行後は、少数の事業用車両を除いてほとんどが旅客車である。エンジンの高出力化と変速機の性能改善は著しく進展した。21世紀初頭の現在では、11 - 15リッタークラスの直列6気筒エンジンで定格460PSを発生する例もあり、各社が新製する2基エンジン搭載型気動車(多くは特急列車用)は電車と遜色ない走行性能水準に到達した。北海道旅客鉄道(JR北海道)の通勤形気動車キハ201系のように、電車と併結して協調運転を行う機能を備えた気動車も出現した。車体を傾斜させることによりカーブを高速で通過できる機能を持った「車体傾斜車両」は、かつてはエンジントルクの反作用で車体がエンジンの回転方向の反対方向に傾くことや、プロペラシャフトの伸縮の制約などから気動車では不可能と見られていた。だが、1989年に試作車が製作され、翌1990年より量産が開始されたJR四国2000系気動車によって、エンジンの2基搭載によるエンジントルクの反作用相殺や、スプラインに変わるボール式伸縮機構の採用によりそれらの問題を克服した「制御付き自然振り子式気動車」最大傾斜角6度の高性能気動車JR北海道キハ283系気動車が実用化された。以降多くの車体傾斜式の気動車が各社で営業投入され、曲線区間の多い非電化幹線での大幅な高速化に寄与している。また、JR東日本では、日本初の営業用のハイブリッド気動車であるキハE200形を開発し、運行を開始している。その後、当車両で開発されたシステムをHB-E300系やHB-E210系でも使用している。また、キハ160系もITTの導入に向けて試験走行が行われ、開発された技術を取り入れた車両としてJR北海道キハ285系が製作された。しかしJR北海道管内で不祥事が続発する中で「現状としては、『安全対策』と『新幹線の開業準備』に限られた『人』『時間』『資金』等を優先的に投入する必要がある」と判断、「コストとメンテナンスの両面から過大な仕様であること」「速度向上よりも安全対策を優先すること」「従来形式での車両形式の統一によって、予備車共通化による全体両数の抑制と機器共通化によるメンテナンス性の向上が図られること」として、試作車落成直前の2014年9月10日に開発の中止が発表された。なお、2016年春以降運行開始予定のクルーズトレインにおいて、電化区間では架線集電、非電化区間ではエンジン発電機の電力でモーターを駆動する(かつての電気式気動車と同じ)という方式を導入することが、2017年 - 2020年にかけて電気式気動車を新潟・秋田地区に導入することが決まっており、JR北海道の既存の液体式気動車を置き換える為に、JR東日本で導入される電気式気動車と同型の試作車(量産先行車)を製作し、走行試験等による冬期の検証を2年行った上で、2019(平成31)年度以降に量産車の製造を予定している。。一方、第三セクター鉄道や地方の非電化私鉄、またJR各社では、従来の国鉄型気動車よりも小型軽量で製造・運用コストの低い標準規格化車両が多く導入されている。これらについては「レールバス」と呼ばれることもある。富士重工業の「LE-Car・LE-DC」シリーズ、新潟鐵工所の「NDC」シリーズの車両が該当したが、1980年代から1990年代にかけて製造されたバスのような外観の車両は1990年代後半以降廃れ、本来の鉄道車両的な構造へと回帰しつつある。高性能レールバスが出現すると、一部私鉄では電気鉄道でありながら気動車を運用する方が低コストと判断し、気動車運行に転換する例も出現した。さらに現在では、道路と鉄道線路の両方を走ることが可能な、鉄道車両とバスを兼ねる車両の研究開発もJR北海道などを中心に進んでいる。これについてはデュアル・モード・ビークル (DMV) を参照のこと。かつては日本の主要な鉄道車両メーカーのほとんどが気動車製造を手がけていたが、1960年代以来大手メーカーは電車製造に重点を置くようになり、メーカーの寡占化が進んだ。1970年代以降、日本における気動車の大多数は客車ともども新潟鐵工所と富士重工業の2社で製造されるようになっていた。しかし、2002年に新潟鐵工所が経営破綻し、さらに富士重工業も鉄道車両製造事業からの実質的撤退を発表した。その後、石川島播磨重工業(現IHI)が新潟鐵工所の当該部門へ出資したことにより新潟トランシス株式会社が設立され、上記2社の鉄道車両製造事業の一部を承継した。現在、新潟トランシスの気動車分野における日本国内シェアは約8割に達する寡占状態である。そのほかのメーカーでは日本車輌製造が近年気動車製造に力を入れていて、1970年代以降製造車両が少なかった私鉄においても納入例が増加しており、また近畿車輛も、2012年に気動車の製造に再参入することが発表されている。なお、自身が気動車新製能力をもつ鉄道事業者は国鉄分割民営化以降JR北海道(苗穂工場)とJR西日本(後藤総合車両所)のみとなっている。昨今では、ディーゼルエンジンの環境に対する悪影響(大気汚染や酸性雨、地球温暖化)が強く指摘され、気動車やディーゼル機関車のエンジンにも環境対策を施す例が見られるようになった。現在はエンジンの直噴化・ユニットインジェクターやコモンレールと電子制御インジェクターの組み合わせによる超高圧・多段燃料噴射の導入・自動車用エンジンで培われた熱効率向上など機関の改良が行なわれている。また DPF 取付や尿素SCRシステムによる排気ガス浄化・燃料のバイオディーゼルへの移行といった環境対策技術も導入されつつあり、変速・駆動系の改良も進んでいる。さらに、従来の熱機関動力の車両を代替するものとして燃料電池を用いた車両も研究されており、現状の燃料電池の超々高コスト・貴金属使用が改善されれば鉄道用として導入される可能性もある。国鉄およびJR各社、一部の第三セクター鉄道では、気動車列車の列車番号は原則として末尾に D(ディーゼル)が付けられる。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。