確率微分方程式(かくりつびぶんほうていしき、)とは、一つ以上の項が確率過程である微分方程式であって、その結果、解自身も確率過程となるものである。一般的に、確率微分方程式はブラウン運動(ウィーナー過程)から派生すると考えられる白色雑音を組み込むが、不連続過程の様な他の無作為変動を用いることも可能である。確率微分方程式は、ブラウン運動を記述したアインシュタインの有名な論文、および同時期にスモルコフスキーにより導入された。しかし、バシュリエ(1900年)の論文「投機の理論」は、ブラウン運動に関連した初期の業績として特筆すべきである。その後、ランジュバンに引き継がれ、後に伊藤とストラトノビッチが確率微分方程式に数学的基礎付けを行った。ブラウン運動、あるいはウィーナー過程は、数学的には極めて複雑である。ウィーナー過程の経路は微分不可能であり、従って、微分・積分を行うには、独自の規則が必要となる。確率解析には、伊藤確率解析、ストラトノビッチ確率解析の 2 つの方法がある。各々には長所および利点があり、初学者は、与えられた状況においてどちらを使うべきか混乱しがちである。しかし、指針は存在するのであり(下記エクセンダール参考文献参照)、伊藤確率微分方程式を等価なストラトノビッチ確率微分方程式に変換でき、再び戻すことも可能である。しかし、その確率微分方程式を立てた際、どちらの解析によったのか、注意を払わなければならない。確率微分方程式、特に確率偏微分方程式の数値解法は、相対的に未発達な分野である。通常の微分方程式の数値解に使用されるアルゴリズムの殆どは、確率微分方程式には殆ど有効に使用できず、数値収束が非常に悪いとされている。洋書であるが、P E Kloeden and E Platen, Numerical Solution of Stochastic Differential Equations, (Springer, 1999) は、多くのアルゴリズムを取り扱っている。これら手法には、オイラー・丸山法、ミルスタイン法、ルンゲ・クッタ法等がある。典型的には、"B" ("t"≧0) を、 "B" = 0 を満たす連続時間一次元ブラウン運動(ウィーナー過程)とするとき、積分方程式をの形に略記したものを、確率微分方程式という。上記方程式は、連続時間の確率過程 "X" の振る舞いを、一般のルベーグ積分と伊藤積分の和で模している。確率微分方程式の発見論的だがとても有益な解釈は、微小時間間隔 "δ" において、確率過程 "X" の変化が、期待値 "μ"("X
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。