レンズ()とは、光を屈折させて発散または集束させるための光学素子。通常は、両側面を球面と球面または球面と平面とした透明体である。用途によっては、片面または両面を球面ではなくした非球面レンズも利用される。実用上の多くのレンズは1つの軸(光軸)のまわりに回転対称な面でできていて、以下の説明では主にこの場合を扱う。回転対称でない例として乱視用めがねレンズ(トーリックレンズ)、棒状の半円柱形ルーペなどがある。入射した平行光束を収束させる働きを持つものを凸レンズ、発散させるものを凹レンズという。通常、レンズ中央部は凸レンズでは厚く、凹レンズでは薄い。素材としてはガラスや、有機ガラスなどの透明なプラスチック類が主に使われる。特に光学機器のレンズには光学ガラスが使われ、また特殊な性質が必要とされることも多く蛍石などの特殊材料がある。顕微鏡として微細な世界とそこに潜む微細な生命を発見させたり、望遠鏡として地球外の世界を見せるなど、レンズは科学の発展に大きく関与している。その他、写真およびその延長である映画、今や写真の技術が不可欠である印刷、その延長である集積回路のフォトマスクなど現代の文明に欠くことのできない物である。写真撮影用のレンズなど、1セットのモジュールとなっているもの全体をレンズと言うことも多い。また、眼の水晶体もレンズと呼ばれる。レンズの語源はレンズ豆(ヒラマメ、)である。当初作成されたレンズは凸レンズであり、その形状がレンズ豆に似ていたことからこの名前が付いた。日本では、眼鏡、拡大鏡、顕微鏡、望遠鏡のように、元来は反射鏡の意であった「鏡」が、おなじ精密光学機器であるためか、レンズにも流用された。宝石の意味もある「玉」(鏡筒の前後端のレンズを前玉・後玉等)ないし稀に「鏡玉」といった語もあるが、一般的ではない(文脈によるが「鏡玉」は、宝物としての鏡と玉という意味のことも多い)。太平洋戦争期の外国語忌避では「透鏡」という造語もされたが、そちらは戦後は完全に廃れている。現在確認されている世界最古のレンズはニムルドのレンズである。ユーラシア大陸の古代文明において、レンズは着火用に用いられていた。光がガラスなど透明な物質に入るときに屈折し、また出るときにも屈折する。回転対称なガラスで軸から離れるほど内側に屈折するように傾けた形状(ふちより中央が厚い形状)にすれば、光が集まるようにすることができる。これを凸レンズ(とつレンズ、)という。一枚のレンズについては、その回転対称軸を光軸と呼ぶ。以下ではレンズに入射する光束が光軸付近の十分細い領域を通る(近軸近似が成り立つ)とする。光軸に平行な光線は凸レンズを通過したのち一点に集まる。この点を焦点と呼ぶ。また、レンズに入る前の光線とレンズから出て焦点を通る光線とが交わる点から光軸上に下ろした垂線の足を主点と呼ぶ。主点から焦点までの距離を焦点距離と呼ぶ。平行光をレンズの前後どちら側から入れるかに対応して二つの焦点が存在することになり、主点も二つ存在する。ただし、焦点距離は前後どちらも等しい。また、レンズの厚みが無視できる程度に薄いと仮定(薄レンズ近似)した場合、二つの主点は一致する。凸レンズには主に以下のような性質がある(図1-1)。物側焦点より遠い物体上の点(物点)から出た光(図1-2)について考えると、結果として物点から出てレンズへ向かう光はレンズの反対側の一点(像点)を通る。軸からの物点の高さと像点の高さとの比は一定となる。像面にスクリーンを置けば物体が逆さまに拡大・縮小された像が投影されることになる。このように物点からの光が像点で交わってできる像を実像と呼ぶ。また、物側焦点より近い物体上の点から出た光(図1-3)について考えると、結果として、実際には物点から出てレンズへ向かった光をレンズの反対側から見ると、あたかも物点より遠くの一点から出たかのように進む。このように物点からの光が像点で交わらずにできる像を虚像と呼ぶ。虚像は、ルーペのようにレンズを覗き込むことで観察できる。虚像の場合にも軸からの物点の高さと像点の高さとの比は一定となる。実像の場合と違い、光が実際に1点に集まるわけではないので、スクリーンを置いても像を投影することはできない。レンズを覗いて虚像を観察できるのは、目が網膜上に実像を結像させるからである。焦点距離 "f" のレンズ("f" は凸レンズでは正、凹レンズでは負とする)について、主点を原点とした光軸方向の座標を "s" (通常は負)、像の光軸方向の座標を "s" とするとという関係(レンズの公式)が成り立つ。より広く知られた形の式は、"s, s" の絶対値をそれぞれ"a
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。