原子力発電(げんしりょくはつでん、)とは、原子力を利用した発電のこと。現代の多くの原子力発電は、原子核分裂時に発生する熱エネルギーで高圧の水蒸気をつくり、蒸気タービン及びこれと同軸接続された発電機を回転させて発電する。ここでは主に軍事用以外の商業用の原子力発電の全般について説明する。原子核反応は核分裂反応と核融合反応の2種類の反応に大別する事が出来る。ただし、核融合反応の利用は実用段階にはなく、現在原子力エネルギーとして実用化されているのは核分裂反応のみである。そのため、単に原子力発電と言う場合は、核分裂反応時に発生するエネルギーを利用した発電を指す。原子力発電の仕組みを簡単に表現すると、核分裂反応で発生する熱を使って水を沸騰させ、その蒸気で蒸気タービンを回す事で発電機を回して発電していると言える。火力発電の場合は石油や石炭、液化天然ガスといった化石燃料を燃やして熱を作り出して蒸気を発生させ、その蒸気で蒸気タービンを回す事で発電機を回して発電を行っている。つまり、原子力発電と火力発電は、発生した蒸気でタービンを回し発電機で発電するという点で、同じ仕組みを利用していると言える。このような蒸気でタービン発電機を回転させ、電力へ変換する発電方法を汽力発電と言う。ただ、火力発電と原子力発電ではタービンを回すまでの過程は大きく異なり、またタービンの形式等も異なる。火力発電所との詳細な相違点については後述する。原子力発電は先述した通り、核分裂反応を利用した発電である。核分裂反応とは、何らかの要因で中性子を捕捉した原子が2つないしそれ以上に分裂する事である。ウラン235の中性子吸収に起因する核分裂反応を例に取ると、以下の様に記述する事が出来る。つまり、ウラン235の核分裂の結果、核分裂片以外にも2 - 3個の中性子が発生するのである。この核分裂反応で発生した中性子は、他のウラン235に吸収され順々に核分裂反応が起こっていくことになる。この反応を核分裂連鎖反応と言い、連鎖反応の進展程度を示す増倍係数formula_2 が1.0以下の状態を未臨界、1.0の状態を臨界、1.0以上の状態を超臨界と言う。尚、中性子を吸収したウラン235は必ず核分裂を起こす訳ではなく、約16 %の確率でγ線を放出した後、ほぼ安定な(半減期の非常に長い)ウラン236になることがある。また、核分裂反応時は反応前の質量よりも反応後の質量の方が小さくなる。この質量差がE=mc²の関係式に基づき、膨大なエネルギーへと変わっている。このエネルギーの殆どは熱エネルギーへと変わり、原子力発電ではこの熱エネルギーを元に発電するのである。核燃料中からの熱除去及び発電のプロセスに必要な要素が冷却材である。核分裂反応で発生する中性子は平均エネルギー約1 MeVであり、高速中性子と呼ばれる。熱中性子炉では高速中性子を核分裂反応を起こし易い、平均エネルギー約 0.05 eVの熱中性子と呼ばれる状態まで減速させる必要がある。減速は中性子と軽い原子核との弾性衝突により行われ、この目的を果たすために必要な要素が減速材である。尚、核分裂反応の結果発生する中性子の大半は核分裂と同時に発生する即発中性子である。しかし、核分裂片の中には崩壊の途中で中性子を発する物があり、これは遅発中性子と呼ばれる。遅発中性子は原子炉内の全中性子の 0.65 %を占めるのみではあるが、遅発中性子がある事により外乱等に対する制御がし易くなっている。原子には、中性子を捕捉して分裂する物と、捕捉しても分裂しない物があることが知られている。分裂する物として代表的なものは、ウランの放射性同位体であるウラン235、プルトニウム239である。しかし、プルトニウム239は天然にはごく微量しか存在しないため、核燃料としてはウラン235が使われる。このウラン235は天然鉱石である閃ウラン鉱に含まれる。しかしこの中にはウラン235が0.7 %程度しか含まれていないため、21世紀初頭現在の一般的な原子炉で核燃料として利用するには、ウラン濃縮工程と呼ばれるウラン235の濃縮作業が必要となる。また、分裂しない物としては、ウラン238が知られている。ウラン238は、中性子を捕捉することによってプルトニウム239に転換でき、これを核燃料として使用することができる。原子力発電における核分裂反応において必要なことは、核分裂反応を制御することである。核分裂反応の制御とは、開始、持続 (臨界)、そして停止である。原子力発電においては、これらが自由に制御されなければならない。この、核分裂反応を制御できるということが原子力発電と原子爆弾を分ける大きな違いである。そして核分裂反応を制御する装置が原子炉である。当然ながら、制御がコンピュータ化されていようとも、そのコンピュータもまた以上不完全な物であり、ミスや制御不能状態となれば原爆と変らない。原子力発電に使用される原子炉には様々な種類がある。原子炉の種類は、減速材と呼ばれる中性子の制御を行う素材と、冷却材と呼ばれる原子炉から熱を運び出す素材の2つによって分類される。減速材としては、黒鉛、重水、軽水などがある。冷却材としては、炭酸ガスや窒素ガスなどのガス、重水、軽水などがある。現在の日本の商用原子力発電では、減速材、冷却材のどちらとも軽水を使用している。これは軽水炉と呼ばれる。核分裂炉を、用いる減速材で分類すると以下のように分けられる。原子力発電は、核分裂反応で発生する熱を使って水を沸騰させ、その蒸気で蒸気タービンを回すことで発電機を回して発電する。一方、火力発電では石油や石炭、液化天然ガスといった化石燃料を燃やして熱を作り出して蒸気を発生させ、発電を行っている。つまり、原子力発電と火力発電では、発生した蒸気でタービンを回し発電機で発電するという点で、同じ仕組みを利用しているといえる。原子力発電所の象徴として、冷却塔の写真が使われることが多いが、これは発電に使用できなかった余りの熱を外部へ水蒸気として排出するためのものである。蒸気による発電では、熱力学第二法則により、発生した熱のすべてを電気エネルギーに変換することは出来ず、必ずある程度の廃熱が発生してしまうことが分かっている。冷却塔はその廃熱を処理するためのものである。一部の原子力発電所は海や川のそばに建設し、熱を温水の形で海や川に排出することで冷却塔を省いている。。なお、この排水を温排水と呼び、放射性物質を含有している。。また、2012年の大飯原子力発電所再稼働時にクラゲが大量発生するという事態について、。汽力発電の一種である原子力発電も原理はランキンサイクルであるため、作動流体である冷却材のサイクルを形成する原子炉、蒸気タービン、復水器、ポンプが中心となる。またこの他にも補助的な役割を果たす多くの機器や設備が必要となる。軽水炉を使用する原子力発電所の敷地内における施設、機器の構成の概要は以下のようになっている。原子力発電プラントで特徴的な設備は気体、液体、固体の放射性廃棄物処理設備や放射線を検出するための環境センサー類、放射線管理区域の出入りを管理する設備である。一般的には、分かりやすく「原子力発電所でも火力発電所でも、蒸気タービンによる発電方式ということでは同じである」と説明されることがある。しかし、厳密には以下の点で違いがある。タービンを回す蒸気が原子力発電所では約284度、6.8MPa(メガパスカル)であり、石炭火力発電所の蒸気の約600度、25 MPaよりも温度、圧力が低く設計されている。この理由は、核燃料棒の被覆に使われているジルコニウムが比較的高温に弱いために一次冷却水を高温には出来ないためである。また、火力発電所では超臨界流体である超臨界蒸気が使用されている。超臨界流体とは、液体の性質と気体の性質を持った非常に濃厚な蒸気であり、熱を効率良く運ぶことが出来るが高温高圧状態が必要なため、原子力発電ではこれを利用することは現在は出来ない。これらの理由から一般的な火力発電所の熱効率は約47%程度であるのに対し、21世紀初頭現在の原子力発電における熱効率は約 30 %程度である。尚、冷却材に超臨界流体である超臨界圧軽水を用いた超臨界圧軽水冷却炉が現在研究中であり、これを原子力発電に用いれば熱効率は45 %程度まで上昇すると考えられている。原子力用タービン発電機は4極であるため、回転数は1500 rpm又は1800 rpm。火力用タービン発電機は通常2極であるため3000 rpm又は3600 rpmである。1930年代に人類は核エネルギーを発見した。その最初の実用化は第二次世界大戦中の1945年に成し遂げられた、原子爆弾(原爆)の開発であった。1942年12月2日に研究用原子炉シカゴ・パイル1号が臨界に達し、世界初の人工原子炉となった。その後プルトニウム生産のため試験炉や生産炉が各地に建設された。史上初の原子力発電は、第二次世界大戦終結後の1951年、アメリカ合衆国の高速増殖炉EBR-Iで行われたものである。この時に発電された量は1kW弱、200W白熱電球4個を光らせるのがやっと。本格的に原子力発電への道が開かれることとなったのは、1953年12月8日に時のアメリカ合衆国大統領、ドワイト・D・アイゼンハワーが国連総会で行った原子力平和利用に関する提案「Atoms for Peace」(平和のための原子力)がその起点とされている。これは、従来核兵器だけに使用されてきた核の力を、原子力発電という平和利用に向けるという大きな政策転換であった。アメリカではこの政策転換を受け、1954年に原子力エネルギー法が修正され、アメリカ原子力委員会 が原子力開発の推進と規制の両方を担当することとなった。1954年6月27日、ソビエト連邦のモスクワ郊外オブニンスクにあるオブニンスク原子力発電所が、実用としては世界初の原子力発電所として発電を開始し、5 MWの発電を行った。次に実用化されたのは潜水艦の動力炉であった。原爆の開発からわずか9年後の1954年に最初の原子力潜水艦が進水している。軍事用に開発された原子炉を民間に転用するところから原子力発電は始まった。1955年に、原子力平和利用国際会議が開催され、原子力技術の発展について討議した。1956年に、世界最初の商用原子力発電所としてイギリスセラフィールドのコールダーホール原子力発電所が完成した。出力は50 MWであった。アメリカでの最初の商用原子力発電所は、1957年12月にペンシルベニアに完成したシッピングポート原子力発電所である。1957年には欧州経済共同体 (EEC) 諸国により欧州原子力共同体 (ユーラトム) が発足した。同年に国際原子力機関 (IAEA) も発足した。原子力発電初期のキャッチフレーズは、「Too cheap To meter」であった。これは、「原子力発電で作った電気はあまりに安すぎるので、計量する必要がないほどだ」、という意味である。原子力発電はそれだけ安く大量に電気を供給できるものと期待されていた。しかし現実はそうではなかった。バックアップ装置の増設等により、建設費が高騰したのだ。原子力発電は他の発電に比べて設備費の割合が非常に大きいため、建設費が高騰するとその影響がより大きくなってしまった。1974年には、アメリカ原子力委員会 (AEC) が推進と規制の両方を担当する事への批判から、AECを廃止し、推進をエネルギー研究開発管理部 (ERDA)、規制を原子力規制委員会 (NRC) に分割することとなった。1974年に、ノーマン・ラスムッセン教授を中心とした原子炉安全性研究において示されたラスムッセン報告により、確率論を基礎にした原子力発電の安全性に関する理論が推進の立場から広く語られるようになった。これによれば、大規模事故の確率は、原子炉1基あたり10億年に1回で、それはヤンキースタジアムに隕石が落ちるのを心配するようなものであるとされたのである。現在の原子力発電は、この理論を応用した多重防護というシステムを基に設計されている。1977年、アメリカでは民主党のジミー・カーター政権が誕生した。カーター政権は1977年4月に核拡散防止を目的としてプルトニウムの利用を凍結する政策を発表した。これによりアメリカでは高速増殖炉の開発が中止され、核燃料サイクルが中止された。これ以降アメリカでは核燃料は再処理されず、基本的にワンススルー利用されるものとなった。1979年3月28日、スリーマイル島原子力発電所事故が発生した。この事故は、世界の原子力業界に大きな打撃を与えた。特にアメリカ国内では先述した建設費用の高騰と合わせる形での事件であったため、原子力発電の新規受注は途絶えた。続いて1986年には、1986年時点で最悪の原子力事故であるチェルノブイリ原子力発電所事故が発生。これにより原子力発電を利用していく際のリスク面が、一般に広く知れ渡ることとなった。日本でも第二次世界大戦中に原爆開発の研究は行われていたが、戦争末期に資金枯渇のため頓挫。1945年8月の敗戦後、連合国によって原子力に関する研究が全面的に禁止された。しかし1952年4月に日本国との平和条約(通称サンフランシスコ講和条約)が発効したため、解禁されることとなった。日本における原子力発電は、1954年3月、改進党の中曽根康弘・稲葉修・齋藤憲三・川崎秀二らにより原子力研究開発予算が国会に提出されたことがその起点とされている。この時の予算2億3500万円は、ウラン235にちなんだものであった。1955年12月19日に原子力基本法が成立し、原子力利用の大綱が定められた。この時に定められた方針が「民主・自主・公開」の「原子力三原則」であった。そして基本法成立を受けて1956年1月1日に原子力委員会が設置された。初代の委員長は読売新聞社および日本テレビ社主でもあった正力松太郎である。正力は翌1957年4月29日に原子力平和利用懇談会を立ち上げ、さらに同年5月19日に発足した科学技術庁の初代長官となり、原子力の日本への導入に大きな影響力を発揮した。このことから、正力は日本の「原子力の父」とも呼ばれている。1956年6月に日本原子力研究所(現・独立行政法人日本原子力研究開発機構)が特殊法人として設立され、研究所が茨城県東海村に設置された。これ以降、東海村は日本の原子力研究の中心地となっていく。1957年11月1日には、電気事業連合会加盟の9電力会社および電源開発の出資により日本原子力発電が設立された。日本で最初の原子力発電が行われたのは1963年10月26日で、東海村に建設された実験炉であるJPDRが初発電を行った。これを記念して毎年10月26日は原子力の日となっている。尚、日本に初めて設立された商用原子力発電所は同じく東海村に建設された東海発電所であり、運営主体は日本原子力発電である。原子炉の種類は世界最初に実用化されたイギリス製の黒鉛減速炭酸ガス冷却型原子炉であった。しかし経済性等の問題によりガス冷却炉はこれ1基にとどまり、後に導入される商用発電炉はすべて軽水炉であった。2009年9月22日、当時の内閣総理大臣鳩山由紀夫は国連気候変動首脳会合での演説にて、二酸化炭素の25%排出削減を含む鳩山イニシアチブを日本の国際公約とする声明を出した。二酸化炭素排出量25%削減という2009年の鳩山内閣が打ち出した方針と並行して、温暖化対策としての原子力発電の促進も議論された。(火力発電と比べて)二酸化炭素の排出が少ない原子力エネルギーは日本の電力需要を満たすキーであることを鳩山は認めており、鳩山内閣として国会にて地球温暖化対策基本法を可決させる予定でいた。当時の環境大臣であった小沢鋭仁もこの法案に関して、原発の記載の必要を唱えていた。内閣府特命担当大臣(消費者及び食品安全担当)福島みずほは、地震が頻発する日本における原発施設の安全性に懸念を示しており、この法案の閣議決定をめぐって鳩山・小沢と温度差があった。2011年には、3月11日に発生した東北地方太平洋沖地震に起因する福島第一原子力発電所事故が発生した(直接の原因は激しい地震だったのか津波だったのかは未だ調査不能で分かっていない。しかし津波直前には再臨界や爆煙を上げる様子が瞬間的ながら記録されており、また原子力建屋の崩壊の仕方などから地震説が有力)。国際原子力事象評価尺度に基づく評価は確定していないが、原子力安全・保安院による暫定評価は最悪のレベル7となっており、日本における最大規模の原子力事故である。臨界状態は、核分裂反応が連鎖している状態であるが、仮にこの連鎖反応が一気に進むと、エネルギーの発生も一度に起こり、発生する高熱と強力な放射線が周辺に放たれてしまう。これが核爆発である。ただし、現在の発電用原子炉で核爆発が起きることは全く無いとされ、起こり得る事故は以下のようなものとなる。原子力発電所で起こり得る最悪の事故としては炉心溶融 (メルトダウン) が挙げられる。これは、原子炉の炉心冷却が不十分な状態が続いた結果、若しくは炉心の異常な出力上昇の結果、炉心温度が上昇して溶融に至る事故である。最悪の場合は水素爆発や、より威力が強く破壊される範囲が広い水蒸気爆発などを誘発し、原子炉圧力容器、原子炉格納容器、原子炉建屋等を破壊し、原子力発電所の外に放射性物質を大量に拡散させる恐れがある。炉心溶融を防止するために、現在は冷却材喪失事故の防止策として非常用炉心冷却装置等の設置、また異常な出力上昇の防止策として原子炉に自己制御性を持たせている。しかし、現在までに3件以上の事例が記録されており、チェルノブイリ原子力発電所事故では広範囲に放射性物質を拡散させ、一部は日本や中国などの極東においても計測された。また、2011年3月の福島第一原子力発電所事故では1、2、3号炉で炉心溶融が発生していた。臨界事故とは、制御棒の予期せぬ引き抜け等により想定外の臨界状態になる (持続的な核分裂反応が始まってしまう) ことである。1978年11月2日に福島第一原子力発電所3号機で発生した事例がある。原子力発電所の事故、故障は国際原子力事象評価尺度に照らされ、0 - 7のレベル (8段階) に分けられることになっている。放射線被曝を伴わない事故の場合でも安全管理不適切と判断され、レベル1以上になることがある。2014年の時点で、世界31の国・地域で426基の原子力動力炉が運転されており、同時点での発電容量は3億8,635万6,000 kW(グロス値)である。以下に各地域の原子力発電の現状を記載する。アメリカ合衆国は最も多くの量の原子力発電を行っており、原子力発電によってアメリカ国内の総電力の19.4%(2013年)を賄っている。2012年8月に使用済み核燃料の最終処分方針が決まるまでの間、新規建設および運転延長許可が凍結されていたものの、その2年後の2014年8月には規制委員会が処分方針を認め、この凍結を解除している。2014年の時点で中南米で原子炉を運転している国はメキシコ、アルゼンチン、ブラジルの3ヶ国である。尚、キューバは1983年に原子力発電所の建設を開始した事があったが、資金面の影響により1992年に工事を中断し、現在に至っている。ロシアで運転している原子炉は計29基2,519万kW、2013年の発電量に占める原子力発電の割合は17.5 %。ロシアでの問題は老朽化である。運転中の原子炉の内、6割が老朽化していると言われている。このため、現在既に11基の原子力発電所を建設中であり、更なる新設計画も立てられている。ヨーロッパ全体での発電量に占める原子力発電の割合は2009年の時点で28 %。欧州連合 (EU) での原子力政策は加盟各国によってまちまちであり、ノルウェー、アイスランド、ポーランド、イタリア等の国では原子力発電は行われていない。反対にフランスは発電量に占める原子力発電の割合が世界で最も高い国である。58基もの原発が稼動しており、総電力の73 %もの電気エネルギーを原子炉から得ている。なおフランスは2007年には国内純発電量の12.4 %に相当する電力を輸出していた。他にイギリス、ドイツ、スペイン等の大国やスウェーデン、フィンランド、ハンガリーといった北欧・東欧諸国で原子力発電を利用中である。ただしドイツでは福島第一原発事故の後、今後国内の原子力発電を順次廃止してゆく方針を決めている。ベルギーでは2014年の時点で7基の原子炉を使用しているが、既に2003年1月に脱原子力法が議会で可決・成立しており、2025年までに原発を廃止するとしている。アフリカ地域の1人あたりの電力使用量は先進国と比べるとまだまだ低い水準であり、原子力発電を実施している国は南アフリカ共和国ただ1国である。実施は1984年。発電量に占める原子力発電の割合は2014年の実績では5.7 %であった。また、2014年現在でエジプト、ケニア、ナイジェリア、ウガンダ、ナミビアその他の国々が原子力発電の導入を検討しているとされている。中東地域ではイランのブーシェフル原子力発電所が唯一の稼動中の原子力発電所である。しかし、トルコ、アラブ首長国連邦 (UAE)で原子力発電所の新規建設が決定されている。中華人民共和国における原子力発電は1994年に開始されたばかりで、後発国といえる。2013年の発電量に占める原子力発電の割合は2.1 %となっているが、今後の経済発展に伴う需要増に対応するため中国政府は相当数の原発建設を計画している。日本の原子力発電は、経済性や安全性から軽水炉の2つのタイプ、沸騰水型原子炉 (BWR) と加圧水型原子炉 (PWR) が使われている。また、需要に合わせた電気出力の増減、負荷追従運転は行わず、常時一定の電力供給を専門としている。2010年現在、日本における電力量の約29 %を原子力が担っていた。一次エネルギーとしての原子力エネルギーは電力事業のみであり、日本での一次エネルギーに対する割合は2002年の時点で15 %程度となっている。また、2010年3月に営業運転期間が40年に達した敦賀発電所1号機をはじめ、長期運転を行う原子炉が増加する見込みである事から、これらの安全性の維持が課題となっている、と指摘された(2010年11月時点)。ただし福島第一原子力発電所事故の影響により、世論のみならず国会内部においても「原子力撤廃」の動きが活発になったことから先行きは不透明である。福島第一原発事故後、福井県の関西電力の大飯発電所3号機・4号機の2基のみが稼動していたがその後停止し、長らくゼロ稼働状態が続いていた。しかし2015年8月11日、九州電力・川内原子力発電所1号機が震災後初めて原子力規制委員会の安全審査を経て再び起動し、9月10日に通常運転に復帰した。日本の各電力会社での全発電量 (売買電力量を含む) に占める/占めていた原子力発電比率 (2009年前後) は以下の通り。31ヶ国中上位15ヶ国を掲載。2014年のデータ。現在、世界的には2つの流れがある。すなわちエネルギー源としての原子力の利用を削減、廃止していこうとする流れと、エネルギー源としての原子力の利用を推進していこうとする流れである。ベルギーでは2003年1月に脱原子力法が成立し、2004年に7基あった原子炉を2025年までに全廃すると決めた。スウェーデン、イギリスは脱原子力を過去に目指していたものの、地球温暖化等の問題によりその政策を見直した。2011年3月の福島原発事故後、ドイツ、スイスが脱原発に踏み出した。イタリアも国民投票の結果、投票の9割を超える反対で原発再開は凍結された。福島第一原発事故後、原子力の利用の維持・拡大を目指した動向は以下の通り。アメリカでは、シェールガスの増産に伴うガス価格の低下の影響で、100基の原子炉のうちいくつかが稼働を停止した。一方、2013年には30年ぶり以上となる新規原子炉建設に着工し、2014年現在5基を建設中である。エネルギー省の見通し(2014年版)によれば、2012年現在の原子力発電設備容量102GWに対して、今後2040年までの間に4.8GWの発電設備が廃棄される一方で、新規の建設もなされ、結局2040年まで現状と同じ102GWの原子力発電設備を維持する見通しとなっている。原子力の利用を継続するためにアメリカでは当初40年であった運転認可が60年まで延長されており、既に100基中、半数以上の原子炉で認可が下りている。さらに、60年を超えた運転延長も検討中である。ロシアでは、国内の原子力発電所の新設を進めるとともに、国外への原子力プラントの輸出を含めた原子力推進方針を明確にしている。2011年12月には、トヴェリ州のカリーニン原子力発電所4号機が建設を終え、新規運転開始した。その操業式典において国営原子力企業ロスアトムのセルゲイ・キリエンコ総裁は、今後20年間で国内38基、海外28基の新規原発建設を含む3,000億ドル相当の投資を行うと発表している。ロスアトムはロシア国内や旧ソ連圏のみならず、ベトナム、トルコやインドなど海外諸国への原子力売り込みを活発化させている。イギリスは西側世界で最初に商用の原子力発電を開始した国であり、1990年代後半には発電電力量の1/4を原子力がまかなっていた。チェルノブイリ原子力発電所事故後、原子力開発は停滞し、プラントの老朽化・閉鎖に伴い発電シェアは低下を続けていた。2000年代に入って北海油田の枯渇や地球環境問題への対処から原子力を見直す機運が高まり、温室効果ガスの削減目標(2050年に1990年比で80%削減)に合わせて、2008年の原子力白書において原子力を積極的に推進する方針が明確に打ち出された。低炭素エネルギーの導入促進のための差額補填契約 (CfD) による補助の対象に原子力も入れることで、新規建設を進めようとしている。2013年には英国内で原子力発電所の建設を目指すフランス電力と英国政府の間でCfDの合意・契約がなされ、欧州委員会の承認のもと、新規建設が進められようとしている。中国では福島第一原発事故の直後に原子力発電所の新規建設許認可を一時停止していたが、翌2012年には安全基準の充足を確認できたとして許認可停止を解除、多数の原子力発電所建設を開始した。中国は2014年現在、31基34GWと、世界で最も多数の原子力発電所を建設中の国である。2014年現在の発電設備容量15GWに対し、2020年には58GWの発電所を運転、さらに2030年までに200GWまで建設を進める計画である。発電用原子炉の建設のみならず、高温ガス炉や高速増殖炉、小型炉などの新技術を積極的に開発し、海外への原子力輸出も進めて、原子力発電強国を樹立することを目指している。韓国でも福島第一原発事故後、依然として原子力新設の動きが進んでいる。2013年に大統領に就任した朴槿恵政権は2014年、現在の原子力発電所23基に対して今後建設中・計画中の11基を稼働させ、更に5 - 7基を2035年までに運転開始させるという長期エネルギー基本計画を決定した。また、海外への原子力プラント輸出戦略も進めており、2030年までに計80基の発電所を輸出することを目指している。既にアラブ首長国連邦に最初の原子力発電所輸出を行っているが、今後も東南アジアやアフリカに輸出を進める方針とされる。インドでは、欧米で利用が拡大してきた軽水炉の技術ではなく、トリウム燃料サイクルの技術開発を進めてきた。しかし核拡散防止条約に未加盟であることから諸外国との原子力協力が進まず、原子力発電設備の拡大は限定的であった。その後2007年に締結された米印原子力協定以降、海外諸国(日本など一部を除く)との協力関係が進み、大量の軽水炉建設計画が急速に進展した。2032年までに、現在の日本の設備容量を超える63GWまで原子力発電設備を拡大する目標を持っている。フランスは発電電力量のうち70 - 80%が原子力であり、アレヴァを中心とする巨大な原子力産業をもち、海外への原子力事業展開を積極的に進めていることでも知られる原子力大国である。しかし2012年に大統領となったフランソワ・オランドは原子力への依存度低減を公約として掲げており、2014年には2025年までに原子力比率の50%までの低減を目指す法案が可決された。一方で、現在建設中であるフラマンヴィル原子力発電所3号機は予定通り建設・運転開始を進める方針とされており、今後の動向が注目される。既に原子力発電所を有している国での原子力推進計画に加えて、新たに原子力を導入しようとしている国もある。前述のアラブ首長国連邦 (UAE)、トルコの他、サウジアラビア、ヨルダン、ポーランド、カザフスタン、ベトナムなどが挙げられる。UAEは既に2012年に原子力発電所の建設に着工しており、原子力公社は2017年から2020年の間に4基の原子力発電所の運転開始を目指している。ベトナムは2030年までに原子炉14基を稼働させる計画を明らかにした。2014年10月時点で、運転可能な原子力発電所を所有する30カ国に対し、新たに建設する計画のある国(提案段階含む)は17カ国である。既に所有している国での増設含め、世界全体で新規建設中・計画中の原子力発電所は以下の通り。経済産業省の総合資源エネルギー調査会電気事業分科会の原子力部会は、2006年6月時点でまとめた報告書に「日本の原子力政策は、原子力設備の更新が予想される2030年以後も原子力発電が現在の総発電量の3割程度という水準か、それ以上の割合を占める事が適切である」といったことを記載し、それが資源エネルギー庁のウェブサイトにも掲載された。また、増え続ける使用済み核燃料に含まれるプルトニウムの処分方法とウラニウムの輸入量を減らすための解決策として、高速増殖炉計画が推進され、2010年現在は原型炉のもんじゅが試験を繰り返し行っている。並行して核燃料サイクル政策としてMOX燃料によるプルサーマル計画が進められている。2015年6月に政府はコスト試算および地球温暖化ガス削減などを考慮して、2030年に目標とする電源構成比率(エネルギーミックス)を決定した。それによれば原子力発電20-22%、再生可能エネルギー発電(水力含む)22-24%、石炭火力発電26%、液化天然ガス・石油火力発電30%である。しかしながら原子力発電の比率は、現在ある原子力発電所を、原子力規制委員会の再稼働認可をとって全て稼働かつ運転期間を延長した場合の数字であり、達成には困難が伴うという意見もある。エネルギー安全保障問題、地球環境問題等の影響で世界的に原子力への期待が高まっている。そのため、原子力エネルギー政策の国際的な協調が行われるようになってきており、アレヴァと三菱重工業、ウェスティングハウス・エレクトリック(CBSコーポレーション)と東芝、ゼネラル・エレクトリックと日立製作所が提携するなど、原子力産業界に変化が見られる。日本では、国外の売り込みにおいてUAEで韓国勢に、ベトナムではロシア勢にそれぞれ敗れるなど遅れが目立ち始めたため、2010年10月には東芝・日立・三菱重工に加え東京電力などの電力会社を交えた合弁会社として国際原子力開発を設立し、日本国外向けの受注活動で相互協力する姿勢を示している。現行の原子力発電の利点として、以下の諸点が主張されている。以下は、火力発電(特に石油)に比べてのメリットである。現行の原子力発電には以下の問題点が主張されている。夜間などの需要減により”余ってしまう”原子力発電電力の有力な受け皿として、[[揚水発電|揚水発電所]]が設置されていることがある。夜間などの消費電力量が少ない時間帯に”余った”電力で低い場所から高い場所にポンプで揚水(つまり「水汲み」)しておき、昼間などの消費電力量が多くなる時間帯に水を高所から低所に落とし、その水力で発電をする。一方、揚水発電は原子力のみのために作られたものではない、という意見がある。1999年に通商産業省(現[[経済産業省]])[[資源エネルギー庁]]の発表によれば、1[[キロワット時|kWh]]あたりの発電コストは次のように試算された。2005年6月に[[特定非営利活動法人]][[原子力資料情報室]]が発表した試算によれば、運転年数40年の場合、1 kWhあたりの発電コストは以下の通り。2010年に経済産業省資源エネルギー庁は、各エネルギーにおける1kWhあたりの発電コストを再試算した(ただしこれは福島原発事故以前のデーターを用いたものである。なお、この内原子力発電コストの見積もりについては、原子炉建設の際の漁業補償金、原子力に特有な再処理費用、1kWhあたり1 - 2円の燃料費等のバックエンドコストは含んでいるが、[[電源三法]]による地元への交付金 (税金)、電力企業からの地元対策寄付金、原子炉廃炉解体費用、原発事故の際の賠償金等は含んでいないため、これらを算入すると原子力発電コストはさらに高くなる。):(注)2008年における日本のエネルギー別の発電電力量割合は、原子力 26.0%、石油火力 10.3%、石炭火力 25.2%、LNG火力 28.3%、水力 7.8%、その他2.4%であった。エネルギー政策が専門の大学教授である[[大島堅一]]は、2010年に各エネルギーにおける1 [[キロワット時|kWh]]あたりの発電コストを次のように試算した。なお、「一般水力」とは、[[揚水発電]]を除いた余剰電力のエネルギー貯蔵を行わない通常の水力発電を指す。2010年に[[米国エネルギー省]] (DOE/EIA) が公表した、2016年にアメリカで運用を開始する新規発電所の百万[[kWh]]あたりの発電コストは以下の通り。なお、1ドル=90円としてkWhあたりコストも表示。2011年11月8日に内閣府の原子力安全委員会では、深刻な原発事故は1基あたり500年間稼働すると1回発生し、その際5兆円の損害賠償が必要になると仮定し、従来コストに1.6円積み増して原発コストが最大7.6円/kWhと試算する中間報告を出した。さらに上記とは別に、2011年12月13日、内閣府国家戦略室のコスト等検証委員会が発表した各発電コスト(円/kWh) の2010年時点価格と2030年予測は下記の通り。これによると、既に2010年段階で、原子力と石炭・LNG火力発電コストは約10円/kWhでほぼ等しい。日本の火力発電のうちでも石油火力発電コストは特に高く、太陽光発電と同等の約37円/kWhのコストがかかっている。また、原子力は廃炉費用・再処理費用・高レベル放射性廃棄物処分費用・立地費用・研究開発費用・事故リスク対応費用などを全て含んで8.9円/kWh以上となっており、この試算段階で5.8兆円と想定された福島第一原発事故の被害額が追加的に1兆円上昇すると、原子力発電単価は0.09円/kWh上昇する、とされた。事故の総費用が正確にわからない現状を反映しているので流動的である。さらに2015年5月26日、経済産業大臣の諮問機関である[[総合資源エネルギー調査会]]の元に設置された専門家会合(発電コスト検証ワーキンググループ)は、2030年エネルギーミックス策定のための電源別発電コストの再検証試算を発表した。その結果は以下の表の通り。表中の数値は政策経費も含む発電単価である。原子力発電については、追加的安全対策費などでコストアップし、かつ福島第一原発事故の被害額が9.1兆円に上方修正された一方で、追加的安全対策により事故発生頻度が1/2に引き下げて評価され、2030年モデルプラントで10.3円/kWh~とされた。なお9.1兆円の事故被害額が仮に1兆円増加すると、原子力発電単価は0.04円/kWh上昇する。この試算においても廃炉費用・再処理費用・高レベル放射性廃棄物処分費用・事故リスク対応費用等が含まれており、また立地費用や研究開発費用は政策経費の一部とされている。太陽光は将来大幅コストダウンが見込まれており、2030年において12.5~16.4円/kWhと評価された。またベースロード電源に指定されている石炭火力発電コストは、発電コスト計ではLNG火力発電をわずかに下回っただけであった。地熱発電は政策経費を含んだ場合、前回よりも大幅コスト高の16.8円/kWhとなった。結果として今回の発電コスト試算では、割引率3%の下限値でみると、電源別で原子力発電が一番安価になった。表中の括弧内は政策経費を含まない発電単価、すなわち国からの補助等を除外して算出した発電単価。エネルギー政策分析や需給見通しなどのレポートを数多く発表する[[日本エネルギー経済研究所]]の研究者である松尾雄司らは、2011年から2014年にかけて、1970年以降の一般電気事業者の[[有価証券報告書]]を分析し、原子力発電のコストは他の発電方法と比較して安価であったとして、1970年 - 2011年平均の日本の発電コスト実績値を以下の通り算出した。原子力については廃炉費用・再処理費用・放射性廃棄物処分費用等を含んでいる。さらに、類似の方法として有価証券報告書を用いた上述の[[大島堅一]]による評価例との相違を分析し、大島による発電コストの計算方法は事業報酬の考え方や物価・利子率等の扱いについて問題があると述べている。米国のシンクタンクが、「原子力発電コストは世界平均で1キロワット時当たり平均14セント(約15円)で、太陽光発電とほぼ同レベルであり、陸上風力発電や高効率天然ガス発電の8.2セント(約9円)よりもかなり高コスト」との試算を出した。エネルギー問題の米国企業系シンクタンク「ブルームバーグ・ニュー・エナジー・ファイナンス」が2014年9月16日に発表した。東京電力福島第1原発事故後の安全規制強化もあって建設費や維持管理にかかる人件費などが世界的に高騰している一方で、太陽光発電はコスト低下が進んでいることが主な理由としている。このことは原子力の経済優位性が薄れていることを印象付ける結果となった、とされた。電力企業が原子力発電所建設申請時に経済産業省電源開発調整審議会に提出した発電原価の試算の一部は以下のとおりである(塩谷喜雄「本当の原発発電原価を公表しない経産省・電力業界の詐術」新潮社ニュースマガジン、2011年7月7日付より)。なお、これらの原子炉設置許可申請書に示されている発電原価は、運転年数として、例えば税制上の法定耐用年数に該当する16年を使用している。原子力発電所を実際に40年間運転することを想定した場合には、発電原価はより安価になる、と述べられている。[[温室効果]]の原因となる[[二酸化炭素]]の排出量が少ないことは、原子力発電の利点の一つとされている。[[電力中央研究所]]が2000年 (平成12年) に発表した試算によれば、原子力をはじめとする各種発電方式について、発電所の建設から廃止までの発電量と二酸化炭素排出量を考慮した、1kWhあたりの二酸化炭素排出量は以下のように試算した。原子力発電では核分裂反応に起因する二酸化炭素の排出は全くないが、発電所の建設、運用、廃止や燃料の生産、輸送、廃棄物の処分等に起因する二酸化炭素の排出も上記の試算には含まれているため、若干の排出が見られる。この点は水力発電も同様である。[[Category:発電]][[Category:原子力発電|*]][[Category:エネルギー]][[Category:エネルギー政策]][[Category:民生転用技術]][[da:Atomreaktor]][[en:Nuclear_power]][[es:Energía_nuclear]][[id:PLTN]][[it:Centrale_nucleare]][[pl:_Elektrownia_atomowa]]
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。