スペクトル線()とは、他の領域では一様で連続な光スペクトル上に現れる暗線または輝線である。狭い周波数領域における光子数が、隣接周波数帯に比べ少ない、あるいは多いために生じる。スペクトル線は、物質の量子系と光子との相互作用の結果である。相互作用する量子系は多くの場合は原子であるが、分子であったり原子核である場合もある。光子のもつエネルギーが量子系のエネルギー状態の遷移(量子系が原子である場合は電子状態の遷移)をもたらす値であった場合、光子は吸収される。光子を吸収した系は、やがて光子を再放出する。再放出された光子は、吸収された光子と同じエネルギーを持つか、あるいは段階的に系がエネルギーを放出する場合は放出された複数の光子のエネルギーの和が吸収された光子のそれと等しくなる。暗線と輝線のいずれが観測されるかは、光源、光と相互作用する物質(典型的にはガス)、および光検出器との位置関係による。光源と光検出器との間に相互作用物質が配置されている場合、エネルギー遷移に共鳴する周波数付近の光子が吸収される。光を吸収した物質はやがて光子を再放出するが、そのほとんどは元の光とは異なる方向に放射される。結果としてその周波数付近で光の減衰が観測され、暗線を生じる。光検出器が相互作用物質の方を向いているが光源からの光が直接検出器には入射しない場合、物質から再放出された光子だけが観測される。物質のエネルギー遷移に対応するごく狭い周波数領域でのみ観測されるこの再放出による光が輝線をもたらす。スペクトル線のパターンは物質固有であり、そのためガス等の光を透過させることのできる媒質の化学組成の特定に利用することができる。ヘリウムやタリウム、セリウムなど、いくつかの元素は分光的手法により発見された。スペクトル線は、ガスの物理的な状態にも依存する。そのため、スペクトル線は恒星などの天体の化学組成や物理状態を分析するためにも用いられる。異性体シフトは、吸収する原子核が放出する原子核とは異なるs電子の密度を持つために生じる吸収線のずれである。原子‐光子相互作用以外のメカニズムもスペクトル線を形成する。光子と物質の相互作用の種類によって、スペクトル線の周波数は大きく変化し、電波からガンマ線までの電磁波の全スペクトルにおいて観測される。スペクトル線の中には、フラウンホーファー線における名称を持っているものもある。たとえば、KはCaイオンに由来する393.336nmの線を表す。その他の例では、スペクトル線はイオン化の状態を表すローマ数字を元素記号に付加した記号が付与される。たとえばCaの輝線はCaIIとも書かれる。中性原子にはローマ数字のIが割り当てられ、1電子を失ったイオンにはIIが割り当てられ、イオン化の価数が大きくなると、大きなローマ数字がわりあてられる。たとえば、FeIXは8個(IXはローマ数字の9)の電子を失った鉄イオンの輝線を表す。スペクトル線は、単一の周波数ではなく、ある範囲の周波数帯にわたって分布する。(言い換えれば、ゼロでないスペクトル幅を持つ。)さらに、その中心は本来の周波数からずれていることもある。スペクトルずれと広がりにはいくつかの理由があり、以下の2つに大別される。局所条件による広がりと、外的要因によるスペクトル広がりである。局所条件による広がりは、光子を放出する原子を取り巻く小さな領域の条件に基づくものであり、小さな領域なので通常は局所熱平衡に達している。外的要因によるものは、放射された電磁波が観測装置にたどり着くまでの間に受けるスペクトルの変化である。また、光を放射する多くの原子の相互作用の結果である場合もある。特定のタイプのスペクトル広がりは、光子を放出する粒子の周辺の条件ではなく、広い領域における条件に起因する。これらの効果は単独に現れることもあれば、他の効果と複合して現れることもある。それぞれの効果が互いに独立だとすれば、観測されるスペクトル線の形状は、それぞれの効果によるスペクトル形状の畳み込みとなる。例えば、熱ドップラー広がりと衝突圧力広がりの両方の効果の結果として、フォークト関数が与えられる。しかしながら、線幅広がりを与える各メカニズムは、必ずしも互いに独立ではない。例えば、衝突効果とドップラーシフトはコヒーレントに作用し、ある条件の下では衝突「狭窄」をもたらすこともある。このことはとして知られている。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。