『与えられた数より小さい素数の個数について』(あたえられたすうよりちいさいそすうのこすうについて、ドイツ語の原題: , 英語での定訳: )は、19世紀のドイツの数学者であるベルンハルト・リーマンが1859年に発表した論文である。同年の学術誌『ベルリン学士院月報』(") 上に掲載された。解析学や幾何学の分野における業績が多かったリーマンが数論の分野で唯一発表した論文であり、わずか8ページしかなかったが、数々の画期的な内容を含み、後世に甚大な影響を及ぼした。特に解析的整数論においては、本論文は同分野の基本文献とされている。内容的には、この論文はあるべき大論文の要約版・研究速報と見なすことができたが、リーマン自身は7年後の1866年に39歳の若さで没したため、本論文の詳細版が出版されることはついになかった。もし詳細版が出版されていれば、関連分野の研究は70年は短縮されただろうという指摘がある。本論文には6個の予想が含まれていたが、リーマン没後、うち5つまでは後の数学者達によって証明が与えられた。最後に残されたのがリーマン予想であり、これは数論における最も重要な未解決問題の一つとされている。この論文の影響はあまりに大きかったため、例えば複素数の表記方法として普通は (特に )と書くところを、リーマンゼータ関数の非自明な零点を論じる場合に限っては、本論文にちなんで と書く慣習がある。また、「リーマンのゼータ関数」という名称も、元々オイラーが導入した関数であるにもかかわらず、本論文でリーマンが記号 を用いて記述したことから以後定着した。リーマンはまた関数 を本質的にスティルチェス積分の尺度として用い、 と素数分布との関連を論じた。そして との比較を通じて、論文の主結果として を定式化した。リーマンは更に進んで、一部に困難が残ることを認めつつ、素数の数を与える関数 の近似公式の導出を試みた。素数分布をある程度正確に記述する素数定理は、後の1896年にとアダマールによって独立に示された。もしリーマン予想が証明されれば、さらに精密な素数分布が導かれることが知られている。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。