最小可聴値(さいしょうかちょうち、、"ATH" )あるいは聴覚閾値とは、雑音の無い環境で聴覚が検知できる最小の純音の音圧レベルである。ヒトの聴覚の特性は周波数により異なり、最小可聴値は周波数毎の最小音圧レベルの測定結果からなる曲線で表現される。最小可聴値の国際標準としては ISO226、及びその改訂版の ISO226:2003 が知られている。ヒトが知覚できる閾値には、刺激の変化を区別できる最小値の「弁別閾」(丁度可知差異)と、刺激自体の存在が分かる最小値である「絶対閾」とがある。最小可聴値は聴覚についての絶対閾を意味する。ヒトは一般に 20Hz から 20000Hz(20kHz)の音を聞くことができると言われているが、外耳や中耳、内耳で聴覚を司る蝸牛などの周波数特性のため聴こえ方は一様ではなく、周波数によって大きく変わる。最小可聴値は年齢や性別により異なるが、一般に 1 kHz~5 kHz で感度がよく、それより低音/高音になるにしたがい検知できる音圧レベルが高くなる。通常、最小可聴値は音圧の実効値を 20 µPa (マイクロパスカル) = 2×10 Pa(パスカル、N/mと等価)を基準にデシベル(dB)で表した"dB SPL"(Sound Pressure Level)の単位で表現される。基準音圧 "P" は、正常な聴覚を持つ若者が 1 kHz で検知できる最小の音圧にほぼ相当する。この音圧での音の振幅はおおよそ水素分子のサイズと同程度であり、非常に小さい。最も感度がよい 4 kHz 付近での最小可聴値は -5 dB 程度である。低い周波数ではそれよりかなり感度が悪く 20 Hz では 70 dB を超える。音圧レベルを上げれば 20 Hz 以下でも知覚可能だが純音としての感覚は失われる。個人差と年齢による差が大きいが高い周波数でも感度が悪くなり、15 kHz 以上では急激に悪化する。最小可聴値は等ラウドネス曲線の一部として表現されることが多く、この場合等ラウドネス曲線での最低レベルの曲線として表される。最小可聴値の曲線は以下の近似式で表現できる。ここで "f" は周波数を表す。最小可聴値の測定値は、単耳聴/両耳聴、自由音場/ヘッドフォン使用、持続音/断続音など測定条件により変わるため、測定結果には測定の条件が記載される。知覚可能な最小音圧レベルを表す用語として、最小可聴値、聴覚閾値とも一般的に使われている。なお、聴力の測定器であるオージオメータのように心理物理学的測定法に関連する分野では、最小可聴値ではなく 聴覚の絶対閾を意味する聴覚閾値が用語として適当であると日本聴覚医学会の用語集には記載されている。最小可聴値は、知覚符号化のように音楽のデジタル信号を効率的に圧縮する技術において必要な特性の1つとして、音楽再生システムなどで広く使われている。知覚符号化を用いた代表的なコーデックとしてはMP3やAACがある。オーディオ信号の最小可聴値以下の周波数成分は符号化する必要が無く、感度が低い周波数領域には少ないビットを割り当てても問題が無い。また信号を少ないビット数で量子化した場合に増える量子化雑音を最小可聴値以下に抑えることで知覚できる雑音を増やすことなく符号化に必要なビット数を低減できる。AACなどのコーデックではこれらを利用して情報の圧縮を行う。医療の分野では、等ラウドネス曲線と共に難聴の判断や聴力検査などのための基礎データとして使われる。最小可聴値は特定の音圧(20 µPa)を基準にした dB SPL で表現するが、聴力検査などの用途には正常な聴力を基準にどの程度悪いかを表現できた方が都合がよい。このような用途のためには聴力レベルを表す "dB HL(Hearing Level)"を用いる。これは正常な聴覚を持つ人が検知できる各周波数での音圧を基準音圧 0 dB HL とし、音圧をデシベル(dB)で表現したものである。正常な聴力の場合は全ての周波数で 0 dB HL の直線となり、難聴などの場合はその程度に応じて聞きにくい周波数での値が大きくなる。最小可聴値のグラフとは逆に、聴力レベルのグラフ(オージオグラム)の縦軸では 0 dB HL が上で値が大きくなる(聴力が悪くなる)方が下になるよう表現する。測定は 125 あるいは 250Hz から 8000Hz までの複数の周波数で行われ、聴力レベルが 25 dB HL を超えるものが難聴と見なされる。右耳と左耳の聴力はそれぞれ気導受話器(イヤホン)経由で測定される。これは気導聴力と呼ばれオージオグラム上では"○"が右耳、"×"が左耳の聴力を表す。さらに、蝸牛から聴覚中枢に至る部位の病変を調べるため、額にあてた発振器などを用い測定する骨導聴力もあり、オージオグラム上では"<"や"[ "が右耳、">"や"]"が左耳の聴力を表す。世界保健機関(WHO)が定めた平均聴力レベルによる聴覚障害の等級は以下の通り。日本の身体障害者福祉法では、両耳の平均聴力レベルが70dB以上、または片方の耳の聴力が90dB以上でもうひとつの耳の聴力が50dB以上の場合に身体障害者と認定される。ヒトの聴力は特別な聴覚障害が無い場合でも年齢と共に低下する。特に高音域での低下が著しい。1 kHz以下での年齢による最小可聴値の変化は少ない。それ以上の周波数では年齢により変わり、周波数が高くなるほど年齢による聴力低下が大きくなる。加齢に伴う聴力の低下は加齢性聴力損失や老人性難聴の名称で呼ばれる。個人ごとに変化は異なるが、可聴値の相対的な変化を表す補正値の年齢と性別による平均値はおおよそ以下のグラフのようになる。一般に聴力は年齢と共に低下するが、40才以降は高音域の低下が大きくなり、50才以降さらに急激に低下する。60才男性の 6000Hz(6kHz)での補正値は平均 38dB 程度になる。男性と比べると女性の聴力の低下は比較的穏やかで、同じ周波数での60才女性の補正値は平均 22dB 程度である。2000Hz(2kHz)以下での聴力は女性側の低下がやや大きいが、男性、女性とも低下は比較的少ない。高齢になればなるほど、声の基本周波数が高い女性/子供の声や高域成分のエネルギーが大きい子音が聞き取りにくくなり、いわゆる「耳が遠い」状態になりやすい。2kHz 以下のエネルギー成分が大きい母音は子音と比べると比較的聞き取りやすい。周波数ごとの補正値の例を以下に示す。聴覚が検知できる最小の音圧レベルの測定には MAF(最小可聴音場)と MAP(最小可聴音圧)の2つの方法があるMAP と似た方法として、鼓膜付近で音圧を測定するのではなく標準化された 6 cc の金属製カップラーを使いその中の音圧を測定する方法もある。この方法は MAPC(coupler-referred MAP)と呼ばれる。MAF と MAP で得られる測定結果が異なることは古くから知られており、一般に MAF で測定する音圧レベルの方が MAP での測定値より低くなる。その差はおおよそ 6 dB~10 dB 程度で、"missing 6 dB" という言葉で表現される。MAF と MAP の差は以下のような要因により説明できる。最小可聴値の比較や、聴覚試験での標準レベルの設定、試験用機器の校正などでは、MAFとMAP の違いを考慮する必要がある。一般的な等ラウドネス曲線での最小可聴値にはスピーカーを正面に置き両耳を使って測定した MAF(最小可聴音場)の値が使用される。等ラウドネス曲線などでの一般的な最小可聴値は滑らかで単純な曲線で表現される。これは多くの被験者のデータを平均しているのと、オクターブ単位の比較的粗い周波数での分析を行っていることが多いためで、個人ごとの最小可聴値の周波数による変化はこのように滑らかで単純だとは限らない。実際、個人単位に多くの周波数について計測を行うと波打ったりぎざぎざした特性になることが多く、またこれらの特性には高い再現性がある。個人ごとの特性の違いは、1922年フレッチャーらによる最初期の最小可聴値の報告でも示されており、報告に含まれる 20 名の女性の最小可聴値の曲線はそれぞれ大きく波打ち、個人ごとに大きな違いがある。非常に細かい周波数単位での最小可聴値の変化(例えば数十Hz程度の周波数で10 dB前後の変化)についての同様の報告はそれ以降にも多くある。ヒトの聴覚は単純で受動的なものではなく非線形で能動的な性質を持つ。例えば、内耳で音を分析している蝸牛の基底膜はフィードバックのある非線形アクティブフィルタ、あるいは無線の分野での再生回路のように働き、フィードバックの結果として小さな音を立てている。この現象は耳音響放射("otoacoustic emission"、OAE)として知られている。最小可聴値の細かい周波数単位の変動はこのような耳音響放射に関係し、蝸牛の能動的な性質を反映していると考えられている。人間の他の知覚と同様、最小可聴値は測定ごとに値が変動する統計量であり、音圧と被験者の応答との関係は確率分布として表される。精密な測定には心理物理学的測定法を用いる必要がある。古典的な心理物理学的測定方法として以下の3つの手法が知られている。これらは心理物理学の提唱者であるグスタフ・フェヒナーが考案した手法である。より新しい方法として以下のような手法がある。最小可聴値の測定の歴史は古い。例えば、1870年にグラーツ大学のテップラー(August Joseph Ignaz Toepler)とボルツマン(Ludwig Eduard Boltzmann)は、発音元としてパイプオルガンを使い、深夜静かになった広場でどこまで音が聞こえるかを調べることで最小可聴値の計算を行った。パイプオルガンに供給された空気流のエネルギーの試算値(約 0.2ワット)と聞こえた距離の 820m より、最小可聴値を約 6.6×10 N/m と計算している。これは実際の音のエネルギーを高く見積もりすぎていることや深夜でも存在するわずかな妨害雑音などのため、現在の数値の 100 倍以上になっている。この後も1877年のレイリー(Lord Rayleigh、John William Strutt)によるものなど多くの研究が行われたが、より正確な数値が得られるのは電子回路を用いた正確な測定機器と妨害雑音が少ない無響室が実現できた1920年代以降で、早いものとしては1922年に発表されたフレッチャー(Harvey Fletcher)とウェーゲル(R.L.Wegel)によるものがある。サーモホンと実用化されたばかりのコンデンサー型マイクロホン、真空管式の発振器、フェルトと鉄板の層を壁に用いた無響室など当時としては最新の測定技術を使用したものだったが、無響室の不完全さなどのため求まった値は現在の数値より 1 桁大きい。現在の値にほぼ近い値が求められるのはさらに測定技術が進んだ1930年代以降で、1933年ベル研究所のシビアン(L.J.Sivian)とホワイト(S.D.White)による測定からである。同じくベル研究所のフレッチャーとマンソン(W.A.Munson)は1933年にシビアンらと同じ方法で等ラウドネス曲線(フレッチャー-マンソン曲線)を求め、この曲線の一部として最小可聴値にほぼ等しい 0 ホンのデータを含めている最小可聴値の精密な測定は難しく、その後も測定の対象者を増やしたり測定する周波数の範囲や測定方法を変えたりしながら多くの測定が行われている。主要なものとしては、聴覚の等ラウドネス曲線の国際規格である ISO226 のベースとなった1956年のロビンソン(D.W.Robinson)とダッドソン(R.S.Dadson)による測定、及び ISO226 の改訂版である ISO226:2003 のために2000年から2003年にかけて東北大学の鈴木 陽一をリーダとして行われた日本、ドイツ、デンマーク、イギリス、アメリカの共同研究による測定がある。この研究は日本が主体となって行い、参加聴取者は延べ約19000人に及ぶ大規模なものだった。最小可聴値の過去の研究の例を以下に示す
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。