高揚力装置(こうようりょくそうち)とは、飛行機の揚力を増大させるための装置である。必要時に主翼から展開させるタイプのものが多い。飛行機は、巡航時にはより早く目的地に到達するため、その他種々の目的のため、可能な限り高速である事が求められる。しかしながら、離着陸時にはできるだけ低速であることが求められる。より低速で離陸と着陸ができれば、その分滑走距離を短くできる。黎明期の飛行機は現在から見れば低速であったが、巡航中において主翼を最適な翼面荷重にすることにより、徐々に速度性能が向上し、高速で巡航できるようになった。だが一方で、主翼の翼面積が小さくなってしまい、翼面積を変えない限り、離着陸速度と滑走距離が増大する問題が発生する。離着陸時において飛行機は可能な限り低速である事が求められるため、巡航時と離着陸時の速度性能のギャップが目立つようになった。飛行機の主翼に発生する揚力は速度の2乗に比例するため、低速性能を重視すれば高速時の揚力が過剰になり、高速性能を重視すれば低速時の揚力が不足する。普通は飛行機は迎角を調整する事によって揚力を適切に保つが、迎角を大きく取ると今度は失速に陥るため、迎角の調整という方法には限界があった。そのため、高速性能と低速性能を両立させるため、主翼の設計自体は高速向きのものとし、低速時に不足する揚力を補うための装置が高揚力装置である。高揚力装置は以下のような方法を用いて揚力を増大させる。翼の前部(前縁)についているものは前縁フラップ、翼の後部(後縁)についているものは後縁フラップ、と呼ばれる。両方を備える機体の場合は組み合わせて使用することが多い。後縁フラップは、プロペラ推進の小型飛行機からジェット推進の大型旅客機や戦闘機に至るまで多くの飛行機に装備されている。角度はふつう何段階かに設定でき、離陸時は中程度の、着陸時は最大の角度にすることが多い。副次的に抗力が増大するため、着陸時の滑走距離を短縮する作用もある。操縦士が2名乗務する民間機の場合、通常は副操縦士がフラップの操作を行う。このため、フラップを操作するレバーは操縦席の右席側に取り付けられる。後縁フラップには以下のような種類がある:前縁フラップとは、その名の通り主翼の前縁に格納された高揚力装置である。巡航中は主翼前縁に格納されており、離着陸時などの迎角の大きな時に前方に引き出し、気流の早期剥離を防止する事で、揚力係数を高めるものである。戦闘機においては、戦闘時の旋回性能向上のためにもフラップを利用する。最初はその目的で開発されたものではないフラップを、パイロットが自分で操作していたが、飛行状態に応じて最適なフラップ角を選択する必要があるため、熟練パイロット以外には操作が困難であった。やがて空戦時の使用を前提に、全開にまで至らない中間的なポジションを予めとっておく空戦フラップが開発され多くの機体で用いられた。しかし、旋回に最適なフラップ角度は速度と旋回にかかるGによって逐次変わるものであり、これら固定空戦フラップでは開度の過剰または不足を招いていた。フラップが過剰に開くことは速度を必要以上に失うことになるし、フラップ開度が不足な場合は旋回に必要な揚力を賄えず、失速へと至ってしまう。理想の空戦フラップとは、パイロットの手をわずらわせること無く、開度を連続的に制御できるもの、ということになる。そこで、空戦フラップの動作を自動化した、自動空戦フラップが開発された。構造そのものはファウラーフラップと同じだが、速度を測るためのピトー管からくる動圧と、Gを計るために水銀を入れた容器とを組み合わせることにより、旋回時に必要なフラップの自動稼働を可能とした。太平洋戦争時の日本海軍機の紫電改や烈風に搭載された。現代のジェット戦闘機では、操縦装置のコンピュータが常時速度や迎え角などを計算しては必要性に応じて必要量のフラップの出し入れを自動で行う機能を持つことが普通となっており、そのコンセプトとしては空戦フラップと共通するものであるが、空戦フラップとあえて呼称する事はなくなっている。ジェットエンジンの推力方向を下に傾けることにより上向きの力を発生させるもの。高速でフラップを展開すると、フラップ自体の破損のほか、主翼付け根部分に過大な応力を生じ危険であるため速度上限(フラップ操作速度)が設けられる。フラップとエルロンを兼ねたもの。アメリカ海軍機などではドループエルロンとも呼称する。フラップとして使用しない水平飛行中は左右のフラッペロンは上下逆方向に動作してエルロンとして働き、離着陸時にフラップとして使用する場合は左右が同調して下向きの角度に動作してフラップとして働く。フラップ動作をしている場合はエルロンとしての効果を発揮できないが、戦闘機であれば昇降舵が左右差動させられるテイルロンであることが多く、また大型民間旅客機は内翼部に独立したエルロンを別個に持っていることが多いため、エルロンとしての効果はそれらが受け持つ。F-16以降に開発された戦闘機ではフラッペロンが使用されていることが多い。F/A-18シリーズやハリアー IIなどは、外翼部がフラッペロン・内翼部が単純フラップやスロッテッドフラップとなっていてより高い揚力を得られるよう努めている。最近の旅客機(B777やA380等)のエルロンも高揚力を得るためにフラッペロンが採用されている。コンコルドのようにカナードを持たないデルタ翼機の場合は後縁の動翼をフラップとして使用することができないため、フラッペロンとは呼べない。ブラウンフラップとは離着陸時の低速時の航空機の揚力を増やす目的でイギリスで考案された高揚力装置である。その行程は境界層制御とも呼ばれる。1960年代には一般的だったが複雑な整備が必要なので廃れた。現在は類似の構造が軍用機等で散見されるが普及はしていない。更に、初期の概念が現代的な技術で乱流制御翼としてより効果的な高揚力装置として使用される。従来のブラウンフラップでは少量のタービンエンジンの圧縮空気を抽出したブリードエアを配管で主翼の後部へ送った。特定の角度のフラップの隙間から高エネルギーの空気を境界層に噴射することで境界層剥離を遅らせ、揚力を増やす。(Boundary Layer Control; 境界層制御)進行方向に対して翼の角度が大きすぎるとき、翼の表面の空気の流れは空気の粘性の影響で運動エネルギーを失い翼に沿いきれずに剥がれてしまい(境界層剥離)、翼表面の圧力が下がらず揚力が発生できなくなってしまう。これを境界層に運動エネルギーを人工的に与えることにより防ぐ方法が境界層制御である。前述のスロッテッドフラップやファウラーフラップも境界層制御をしている。種類として以下のものがある。乱流制御翼 Circulation Control Wing (CCW) は航空機の主翼の揚力係数を高める高揚力装置である。CCW技術は60年以上の研究開発の歴史があり、初期の形式はブラウン・フラップと呼ばれていた。CCWは高圧の空気を隙間から噴射するように特別に設計された航空機の主翼の前縁と後縁を流れる空気流の速度を増やす事により作動する。主翼は丸められた後縁に沿って空気を噴射することでコアンダ効果によって揚力を増やす。主翼の上面の空気流の速度が増えると同様に通常の翼型によってもたらされる揚力も増える。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。