『原論』(げんろん、, ストイケイア、)は、紀元前3世紀ごろにエジプトのアレクサンドリアで活躍した数学者エウクレイデス(、 ユークリッド)によって編纂された数学書である。論証的学問としての数学の地位を確立した古代ギリシア数学を代表する名著。ユークリッド原論とも。英語の数学「Mathematics」の語源といわれているラテン語またはギリシア語の「マテーマタ」()は「レッスン(学ばれるべきことども)」という意味であり、このマテーマタを集大成したものが『原論』である。本書の内容は現在でもユークリッド幾何学として広く知られるものを含んでいるが、原論そのものは幾何学のみを扱うものではない。全13巻で内容は以下の通り。平面の初等幾何について述べられているのは1、2、3、4巻と6巻。ただし、この内容はユークリッド本人の業績というよりは、それ以前にピュタゴラス学派等の貢献により、ユークリッドの時代より前から既に体系化されていた情報を再編纂したものである可能性が高い。また、5巻、12巻は当時のプラトン学派数学者エウドクソスの業績であるし、10巻、13巻は同じくプラトン学派のテアイテトスの貢献によりもたらされたものと考えられる。よって、ユークリッド本人は主に既存の知識と最新の学術成果を付け加えて、『原論』を編纂したものと考えられる。14巻、15巻も存在するが、それらはユークリッドの時代より後になって付け加えられたものだと考えられている。ハイベア・メンゲ編纂の『エウクレイデス全集』では第5巻に14巻、15巻がスコリア(古注)とともに収録されている。『原論』ではいくつかの定義からはじまり、5つの公準(要請)と、5つ(又は9つ)の公理(共通概念)が提示されている。議論の前提となる点や線、直線、面、角、円、中心などの概念が定義され、次のような5つの公準を真であるとして受け入れることにより、作図の問題の基礎を明確にしている。これらのうち5番目の公準については古代より、他の公理、公準に比して突出して複雑、自明とするには疑問とされていたが、この疑問により、近代に至ってこの公準が成立しないとする幾何学である非ユークリッド幾何学の発端となる。さらに公準の後に次のような公理が示される。これはあらゆる学問に共通の真理として受け入れられるものであり、研究において常に参照すべきものとされている。ただし[]で囲まれた公理は公理に含めないことがある。第5公理は第2公理から導かれる。また第9公理を現代的に言い換えると「異なる2点を通る直線はただ1本だけ存在する」となる。第9公理は幾何学に関するものなので、本来は公準に含められるものと考えられる。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。