眼鏡(めがね、メガネ)とは、目の屈折異常を補正したり、目を保護したり、あるいは着飾ったりするために、目の周辺に装着する器具。レンズを使って物を(拡大して)見ることに関しては、紀元前8世紀の古代エジプトのヒエログリフに「単純なガラス製レンズ」を表す絵文字がある。レンズで拡大して見ることについての具体的な記録としては、紀元1世紀皇帝ネロの家庭教師だった小セネカが「文字がどんなに小さくて不明瞭でも、水を満たした球形のガラス器やグラスを通せば、拡大してはっきり見ることができる」と書いている。ネロ自身もエメラルドを矯正レンズ代わりにして剣闘士の戦いを観戦したと言われている。矯正レンズは9世紀のアッバース・イブン・フィルナスが使っていたと言われており、彼は非常に透明なガラスの製造方法を考案した。そのようなガラスを半球形にして磨き、文字を拡大して見るのに用いたものをリーディングストーン () といった。凸レンズを使った拡大鏡が初めて記録されたのは、1021年にイブン・アル・ハイサムが出版した『Kitab al-Manazir』(光学の書)である。これが12世紀にラテン語に翻訳され、それに基づいて13世紀イタリアで眼鏡が発明されることになった。ロバート・グロステストが1235年より前に書いたとされる論文 "De iride" ("On the Rainbow") には「遠距離から小さな文字を読む」ために光学を用いることへの言及がある。1262年、ロジャー・ベーコンもレンズが物を拡大して見せる特性があることを記述している。サングラスの原型は煙水晶の平らな板を使ったもので、中国で裁判官が視線を隠すために使った。12世紀かそれ以前から使われていたとされている。ただし、レンズにして矯正するという発想はなかった。1284年ごろのイタリアで、 が世界初の眼鏡を発明したとされている。絵に眼鏡が描かれたのは の1352年の肖像画が最初で、枢機卿 Hugh de Provence が写字室で書物を読んでいる姿が描かれている。また、1403年に作られたドイツ の教会の祭壇飾りに眼鏡が描かれている。眼鏡の発明者が誰なのかについては、諸説ある。1676年、ピサ大学の医学の教授だったフランチェスコ・レディは、1289年に書かれた手稿を持っており、それには「最近発明された眼鏡がなかったら読み書きができなくて困っていただろう」と書かれていると記している。彼はまた、1306年2月23日水曜日朝にフィレンツェのサンタ・マリア・ノヴェーラ教会において行われた説教の記録も参照している。その説教を行ったのはドミニコ会の修道士フラ・ジョルダーノ・ダ・リヴァルトで、眼鏡について「この20年以内の発明である」「発明者と話をしたことがある」と述べたという。これを根拠として、レディはもう1人のドミニコ会修道士でピサのフラ・アレッサンドロ・ダ・スピナが発明者だとした。そして、実際には真の発明者が別にいたがその人物はそれを秘密にし、ダ・スピナが再発明したと推測している。レディはダ・スピナの死亡記録も参照している。発明の正確な時期と発明者は今後もずっと探求されると思われるが、眼鏡が1280年から1300年の間にイタリアで発明されたことはほぼ確実である。初期の眼鏡は凸レンズを使っており、遠視と老視を矯正できたが、もっぱら老眼に使われた。中世において眼鏡は知識と教養の象徴であり、聖人の肖像には、たとえ眼鏡発明以前の人物であっても、眼鏡がしばしば描き入れられた(アウグスティヌスなど)。近視を凹レンズで矯正できることを発見したのは、ニコラウス・クザーヌス(1401年 - 1464年)とされている。ただし、凸レンズや凹レンズによる視力矯正を理論付けしたのはヨハネス・ケプラーの光学や天文学の論文であり、1604年のことである。また、日本に眼鏡を伝えたのは、宣教師フランシスコ・ザビエルで、周防国の守護大名・大内義隆に謁見した際に献上したのが最初といわれている。ただし、これは現存しておらず、現物で残っている日本最古の眼鏡は、室町幕府12代将軍足利義晴が所持していたと伝わるものがある。一説には、義隆の物より、義晴が所持していたものの方が古いとも言われる。また徳川家康が使用したと伝わる眼鏡も久能山東照宮に現存している。日本でも、眼鏡はやがて国内で作られるようになり、江戸時代の半ばほどにもなると、江戸や大阪の大都市では、眼鏡を販売する店が出るようになった。アメリカ合衆国の科学者ベンジャミン・フランクリンは近視と老視に悩まされ、1784年に眼鏡をいちいち交換しなくて済むように多重焦点レンズを発明した。1825年、イギリスの天文学者ジョージ・ビドル・エアリーが世界初の乱視用レンズを製作した。眼鏡のフレームも進化してきた。初期の眼鏡は手で押さえるか、鼻を挟み込んで使う形だった(鼻メガネ)。ジロラモ・サヴォナローラが眼鏡にリボンをつけて頭に巻いて縛り、帽子をかぶれば外れないという提案をした。現在のようにつるを耳にかける形のフレームは、1727年にイギリスの眼鏡屋エドワード・スカーレットが開発した。そのデザインはすぐに広まったわけではなく、18世紀から19世紀初期にかけて柄付眼鏡などもファッションとして使われ続けた。20世紀に入ると、カール・ツァイスの (および H. Boegehold と A. Sonnefeld)が Zeiss Punktal という球面レンズを開発し、その後これが眼鏡用レンズとして広く使われるようになった。眼鏡とは、英語で a pair of glasses、つまり一組のガラスと呼ばれるように、本質的には眼前に置かれた2枚のレンズである。初期の眼鏡には耳にかけるテンプルがなく、まさに一組のガラスと呼ぶに相応しいものだった。今日の眼鏡は以下のような部品から構成される。眼科での度数検査に用いる物などを除き、通常の眼鏡には凸レンズでも凹レンズでもメニスカスレンズが用いられる。これはレンズの外面(眼球から遠い面)も内面(眼球に近い面)も眼球側から見たときに凹面になっているもので、回旋する眼球に対して、レンズ周辺部を通してみたときの光学性能が極端に落ちないようにするためである。眼の屈折異常によって異なる種類のレンズが使われる。近視は遠方から眼に入った光線が網膜ではなくもっと手前で焦点を結んでしまうものであるから、光線が眼に入る前に予め凹レンズによって分散させてしまえば網膜上で焦点を結ぶようになり、近視が矯正される。これが近視の眼鏡の原理である。近視の眼鏡によって物が小さく見えるとよく言われるが、近視の多くを占める軸性近視の場合、これはある意味では正しく、ある意味では間違いである。凹レンズには眼から離れれば離れるほど物を小さく見せる効果がある。眼鏡レンズは眼から多少なりとも離れた位置に掛けられるので、その人の現在の裸眼での見え方に比べれば、なるほど近視の眼鏡をかけると物が小さく見える。しかし、その人が正視だったころの見え方に比べれば、ほぼ同じ大きさか、むしろやや大きく見えているのである。凹レンズとは逆に凸レンズには目から離れれば離れるほど物を大きく見せる効果がある。軸性近視では凸レンズである角膜や水晶体が正視の場合より網膜から離れてしまっているので、裸眼で物を見た場合、正視より網膜に物が大きく映っている。凸レンズが網膜から離れると網膜像が大きくなることは、凸レンズの老眼鏡を通常の位置に掛けた場合と離して掛けた場合とを比べれば容易に理解されよう。凹レンズによって網膜像が縮小されるといっても、軸性近視では裸眼の時点で正視より網膜像が拡大されてしまっているので、その分を考慮しなくてはならない。角膜頂点からおよそ15mm離れたところへ凹レンズの眼鏡をかけると、正視と同じ大きさの網膜像になる。軸性近視により網膜像が拡大される効果と凹レンズにより縮小される効果がちょうど打ち消しあうのである。しかし現実には眼鏡レンズは角膜頂点から10mmから12mmまで近づけるように調整されるので、軸性近視によって網膜像が拡大される効果が完全には打ち消されず、眼鏡をかけても正視だったころより網膜像はやや拡大されたままである。近視を眼鏡で矯正する際は度を弱めにすることがある。弱めに矯正することを低矯正という。これに対して一番よく見えるように矯正することを完全矯正という。近視を低矯正することについては、近年の実験結果から近視を低矯正していると完全矯正しているより近視の進行が激しくなる恐れがあるとの批判もある。日本眼科医会の2010年度調査報告書では、近視を完全矯正するか低矯正するかについて臨床現場では判断が分かれていると報告している。遠視は遠方から眼に入った光線が無調節状態で網膜ではなくもっと奥で焦点を結ぶものであるから、光線が眼に入る前に予め凸レンズで屈折させれば無調節で網膜上に焦点を結ぶようになる。これが遠視の眼鏡の原理である。しかし、眼には調節力があるので、遠視の程度の軽い場合や、年齢が若く調節力の強い場合は眼鏡をかけなくても差し支えないことも多い。理論上は遠視は眼精疲労を招きやすいものではあるが、だからといって本人が眼精疲労を訴えているわけでもないのに徒に遠視の眼鏡をかけさせても良い結果を招かない。本人が苦痛を訴えているわけでもない遠視をむやみに矯正すると、なるほど調節は休まるかもしれないが、調節が休まったことに釣られて両目が離れようとする、つまり開散しようとする。これを離れないようにする、つまり輻湊することに余分な輻湊力を使うことになって苦痛は一向に軽くならないのである。遠視を眼鏡で矯正する際は完全矯正されるのが通例である。トロイダルレンズ(近視や遠視を全く含まない乱視の場合は円柱レンズとなる)近視や遠視の有る無しに関わらず、ほとんどの人は乱視をもっている。近視や遠視で眼鏡を作成する場合は、軽い乱視でも「ついでに」矯正する場合が多い一方で、軽い乱視ならば矯正しないほうが眼鏡に慣れやすくてよいとする意見もある。老視とは、目が元来持っている機能である調節力(近距離に焦点を合わせる眼の機能)が加齢とともに弱くなり、遠距離(一般に5m以上)が明視(焦点が合ってはっきり見える状態)できる状態のままでは、より近くの目的距離(はっきり見たい距離)に焦点を合わせることが困難となった状態を言う。補正は遠距離用度数に目的距離の物を楽に長時間明視できる凸レンズ度数を加えたレンズを使用する。加齢によって狭くなった明視域(焦点を合わせ明視することができる奥行き幅)を凸レンズ度数の加入によって移動し、より近くの目的距離に合わせている状態にする為、老視の眼鏡レンズを装用した状態で、近くの目的距離は明視できるが遠方は明視できなくなる。老視の近距離用レンズは凸レンズとは限らない。ある程度以上の度数の近視眼の場合は遠距離用度数が強い凹レンズの為、近距離用に凸レンズ度数を加えても凹レンズ度数が残り、近距離用レンズが凹レンズになることもある。近視の目でも一般に40歳程度の年齢を過ぎれば調節力が落ち、遠距離が明視できる眼鏡やコンタクトレンズを装用したままでは、徐々に近距離の細かい字や小物などの細部が見づらくなってくる。老視は屈折異常ではなく老化現象のため、老視にならない人はいない。ただし、次の理由により近視を眼鏡で矯正している者は老眼を自覚する時期が正視や遠視の者より遅くなる。近視の目は老眼にならないなどと言われることがあるがそれは誤りで、近視でも老眼にはなるが、近視を眼鏡で矯正していると老眼になっても自覚しにくいというのが正確なところである。コンタクトレンズやレーシックで矯正している場合は、正視と同じ時期に老眼を自覚する。老視の人がひとつの目的距離のみを見たい場合であれば、適正に調整された単一度数のレンズ(単焦点レンズ)の近距離用眼鏡のみで問題はない。ただ、眼鏡によって明視域が広がったわけではないので、複数の目的距離(書類とプロジェクター画面等)を切り替えて見たい場合は単焦点レンズだと眼鏡の掛け外しや複数の眼鏡の掛け換えが必要で、実用上煩雑になる。また、老視の程度が進むと書類とPC画面の距離の差でさえ、自然な作業姿勢のままでは、ひとつの近距離用単焦点レンズの眼鏡で両方を楽にはっきり見ることが難しくなる。このような不自由を解消するため、ひとつのレンズに異なる度数の部分を作ったレンズが多種類作られており、総称して両用レンズと呼ばれる。通常はレンズ上部が下部より遠い距離用で、レンズ下部が上部より近い距離にピントが合うように作られている。両用レンズには大きく分けると下記の累進レンズと多重焦点レンズがある。1枚のレンズ上で、異なる目的距離にあわせた異なる度数を持った部分を作り、その間を徐々に度数が変化する面(累進帯)で結んだレンズの総称。度数の変化が下記の多重焦点のような段階的ではなく累進的に変化するので累進レンズと呼ばれる。一般には「境目のない両用レンズ」などと呼ばれることが多い。累進レンズの種類はいくつかあり、使用目的に合わせて遠近レンズ・中近レンズ・近々レンズと呼ばれる事が一般的で、各個人のニーズや目の使い方、年齢に合わせて種類・度数を選択する。またレンズのグレードも一般的なものから上級グレードまで存在する(一般向けではレンズの表側で度数変化の曲面を付けた外面累進が多いが、上級グレードは累進レンズの特性上の問題を軽減するため、レンズの裏側で度数を変化させる曲面を付けた内面累進や非球面累進が多く、高加入度数の場合は上級グレードの選択が強く推奨される)。遠近レンズは遠くを見ている時間が長い目の使い方に適したレンズで、近距離用(通常30cm~50cm前後)・中間距離用(通常50cm~1m前後)の視野が比較的狭い代わりに、常用して屋外の歩行や運転等でも使用できるよう、レンズ上部の遠距離用度数の視野が広く作られている。中近レンズは室内でのデスクワークや読書、手作業等の近距離作業の時間が長い目の使い方に適したレンズで、遠距離用の視野はレンズ最上部の狭い範囲に限定される代わり、手元やPC等の近距離用から中間距離用の視野が遠近レンズよりも広く作られている。一般的な中近レンズは、会議・打ち合わせなどに必要な最低限の遠距離用視野はあるが、レンズの上下の真ん中付近は中間距離にピントが合う様に作られているため、屋外での使用には適さない。ただ、装用に慣れれば掛けたままで階段以外での屋内での歩行もある程度は可能である。近年、中近レンズに分類される物の中でも、装用に慣れれば運転を除いた屋外使用が可能とされたレンズがあり、いわば遠近レンズと中近レンズの中間的な性格のレンズもある。近々レンズは近距離作業を主目的としたレンズで、レンズ下部が大きく近距離用度数になっており、レンズ上部が中間距離用の度数になっている。中近レンズと違い遠距離用度数の部分はない。特に近距離用の視野が中近レンズよりもさらに広く、座った状態での遠距離を見ない長時間のデスクワーク・読書・手作業等に適している。近距離用単焦点レンズ(一般に言う老眼鏡)の奥行き方向の明視域の狭さを、ある程度改善したものと言える。歩行には適さない。累進レンズはその特性上、レンズの中央でない周辺部では像のゆがみやぼやけを伴い、明視できる視野が普通のレンズに比べて狭く、また下部が累進的かつ段階的に老視用の度数になっているため、視野が揺れて感じたり、遠近感などが狂いやすい、足下がぼやけるなどの現象もある(加入度数が強いほどこの特性はより顕著になる)。そのため、自然体の姿勢でいると、階段や段差のある場所では踏み外しやよろめきなどで転倒・転落などのおそれや、人通りの多い箇所では歩行中、他の歩行者との接触・衝突なども起きやすいなど、特有のリスクもあるため、使用時にはレンズの周辺部に視線が入らないようにする、視線の使い分けを十分に行えるようにするなどの注意が必要である。また遠部と近部はあごの上下などで最適な明視域を調整する必要があるため、不自然な姿勢になりやすく身体的負担も増大する、食事などのように俯き加減の姿勢で近用部がほしい場合などには視線が合わないなど、姿勢や角度によっては非常に見づらくなるなどの問題点もあるので、状況によっては遠用時には普通レンズの眼鏡に掛け替える、あるいは近用の頻度が多い、または近用時の時間が比較的長い場合は一時的に眼鏡を外すか、より近距離に特化した累進レンズや単焦点の老眼鏡に掛け替えるなどの必要がある場合もある。さらに自動車などの運転時には直接目視の時などに肝心な方向がぼやけやすく、そのためあごを大きく引く、あるいは眼鏡をやや下向きに掛けて近用部に視線が入らないようにするなどの工夫が必要な場合もあり、特に夜間はミラーや後退時の安全確認で見づらい場合もあるので注意が必要であり、このため軽自動車や普通乗用車など、普通免許で運転可能な範囲のものであればそう大きな問題はないが、中型・大型免許の適用範囲である大型の四輪車の運転や、重被牽引車を牽引して運転する場合では遠近両用などの累進レンズの使用はなるべく避け、普通レンズの近視用などに処方された眼鏡の装用が望ましい。そうした事からそれらの特性への「慣れ」が必要であり、遠近両用の累進レンズの場合は老眼の初期症状が出る40歳代前半のうちから掛け始めると、加入度数(遠用度数に加えられる老眼用の度数。正視の老眼鏡でいう適正な度数に相当する)がそれほど大きくない(加入度数が概ね1.5D以下程度が多い)ので累進レンズの特性に比較的慣れやすいが、ある程度老眼が進行する40歳代終わりから50歳代(加入度数が概ね2.0D以上になる場合が多い)以降から掛け始めると、累進レンズの特性に慣れにくくなり、むしろ使いづらい場合も出てくるので、レンズを処方される場合は生活様式などを配慮して慎重に度数などを決める、中近もしくは近々などのレンズを場面に応じて使い分けるなどの必要が出てくる場合もある。また加入度数が2.0Dを超える場合は内面累進などの上級グレードのレンズの選択が推奨され、小さめのフレームは避けた方がよい。どうしても累進レンズの特性に慣れない場合は累進レンズの使用を断念し、後述の多重焦点レンズの使用を考えるか、単焦点の遠用と近用、中距離用などの眼鏡を作り、面倒ではあるが掛け替える方法以外選択肢はない(元の近視・遠視・乱視などの度数が相当強い場合や、左右の度数差が概ね2.0D以上ある不同視の場合も同様である)。遠距離用補正レンズ(台玉)の中に、小玉と呼ばれるより近距離用の度数の窓を作ったレンズ。上下で半分に分かれている物もある。一般には「窓のある両用レンズ」などと呼ばれる事が多い。このタイプのレンズでは、遠距離と近距離の二つの目的距離にそれぞれの度をあわせた二重焦点(バイフォーカル)がよく使われる。老視の程度が進むと、PCや囲碁・将棋などの時に必要な中間距離が、遠距離用度数部分と近距離用度数部分のどちらから見てもはっきり見えない状態になるため、使用する人のニーズによっては、遠距離用部分と近距離用部分の間に中間距離用部分を挟んだ三重焦点レンズ(トライフォーカル)を選択する場合もある。慣れれば、常用して屋外での歩行・運転は不可能ではない。累進遠近レンズに比べて近距離用視野が広い、視野の揺れ・ゆがみも少ないなどの長所もあるが、遠用部から近用部の境目で急に遠近感などが狂ったり、像の大きさなどが異なって見える場合もあるので、累進レンズの場合ほどではないが、ある程度慣れが必要である。また近年は外観上の理由から使用する人が少なくなっているが、加入度数がかなり強めの場合は累進レンズに比べて使いやすい面もあることから、一部では需要もある。表面・裏面とも球体の一部を切り取った曲面に研磨されたレンズを球面レンズという。縦方向と横方向とで度数を変えて乱視矯正を含めたものは面形状が球面ではなく、正確な光学上の分類では球面レンズではない。しかし眼鏡レンズでは慣習として、球面レンズと同じラインアップ上の製品であれば「球面レンズ」と呼んでいる。非球面レンズでは片面または両面を意図的に球面でなくして設計してある。そのため断面を見ると外周と内周とでカーブのきつさ(曲率)がなだらかに変化している。球面でなくする意図には次のようなものがある。遠視用レンズは球面設計では十分な光学性能の実現が難しく、大きな光学的歪みを生じるが、非球面設計によって改善される。近視用レンズでは球面設計でもそこそこ良好な光学性能が達成可能なので、非球面設計にする目的は1.の薄型化が主である。特に4.の点は、近視用では球面でも非球面でもほとんど差がない。眼鏡店では近視の客にも非球面レンズのほうが歪みが少ないと言って勧めることがあるが、その際の歪みとは2.や3.を指している。度数誤差や非点収差も光学上の歪みの一種なので、度数誤差や非点収差の少ないことを指して歪みが少ないと言うのも全く間違っていない。ただ、客の側としては歪みが少ないと聞いて4.のように思いがちではある。また、歪曲収差は慣れの要素も大きい。人間の眼球のレンズに当たる角膜や水晶体はそれほど高い光学性能を持ったものではなく、強い収差を生じている。網膜に映っている像は裸眼でももともと歪曲しており、外界の直線は網膜上には曲線として映っている。それが本人に直線に見えるのは「網膜にこのくらいの曲線として映るものは、実際には直線である」と学習した結果である。そのため歪曲収差の低減がそのまま本人が自然と感じる見え方に繋がるとは限らない。むしろ以前かけていた眼鏡に似た歪曲があったほうが、本人には自然に感じられることがある。度数誤差が小さく周辺部まで度数が一定であることも、近視用レンズではクレームに繋がることがある。近視は弱めに矯正されることが多いので、球面レンズでレンズ周辺部の度が中心部より強いことで結果的によく見える度になることがある。そのような状態に慣れた人が同度数の非球面レンズに変更すると、球面レンズより周辺部の見え方が悪いと感じることがある。さらに細かく分類すればレンズの外面のみを非球面にした外面非球面と、内面を非球面にした内面非球面、両面を非球面にした両面非球面とがある。それぞれの性能は、理論的にはどれでも大差ないが、現実には製造工程の都合で外面非球面の性能が劣る。外面非球面は、ある度数範囲を同じ非球面形状で兼用し、内面を目的の度数に合わせて球面研磨することでそれぞれの度数のレンズとして仕上げられる。用意すべき非球面形状が少なくて済むので安価に量産できる。使用する人の度数がたまたま兼用する度数範囲の中央に当たればよいが、範囲の境界に当たれば性能が劣るかもしれない。それに対して内面および両面非球は度数一段階ごとに別の非球面形状を用意するので、どの度数でも理想的な非球面形状が使用される。その代わり生産コストが嵩む。主なレンズの材質はプラスチックとガラスである。また、極めて高価なため使用する人は稀だが、人工サファイアを使用したレンズもある。現在では販売量の9割近くがプラスチックレンズである。利点としては、「割れにくい」「軽い」「染色によってカラーの選択が自由」などがある。欠点としては、傷が付きやすい。通常はハードコート(後述)がなされているものの、ガラスレンズには及ばない。ただし、耐擦傷性向上によるガラスレンズ並みの傷つきにくさを謳う製品もある。また、レンズが厚く、屈折率の高いプラスチックが開発され薄くなってきているが、同時に屈折率の高いガラスも開発されており、レンズの薄さについてはガラスの方が優位である。また、比較的熱に弱いが、日常生活では特に問題にはならないことが多い。プラスチックに比べ、傷が付きにくく、熱に強い。また、レンズはかなり薄く、外観に優れる。一方で、衝撃に弱く(ヒビが入ったり割れることがある)、薄いにもかかわらず重い。近年はプラスチックレンズが主流になり、ガラスレンズは少なくなっているが、調理場や工場・焼却施設など化学薬品や油分・火気などの使用が多い場面での使用では優位性があり、一部では根強い需要もある。通常の眼鏡レンズより屈折率の高い材質を用いたものを高屈折レンズという。ガラス・プラスチックともに商品がある。高屈折率プラスチックレンズの素材としては三井化学のMRシリーズに代表されるチオウレタン系の樹脂が広く採用されている。高屈折レンズの極端な例としてはサファイアレンズがある。このレンズの利点は、といったものであり、特性は非常に優れている。ただし1枚100万円以上と極めて高価である。ローマ皇帝ネロはサファイアのサングラスを愛用していた。レンズ表面に施されるコーティングには次のようなものがある。カタログ等に表記される名称はメーカーによって異なる。眼鏡のレンズを眼前に固定するための枠をフレームという。眼鏡のフレームの日本での主な生産地は福井県鯖江市であったが、近年割安な中国製品に押されている。眼鏡の大きさは『46□18-135』のような形で表記されることが多い。この場合、レンズ横幅46mm、鼻幅(山幅)18mm、つる長さ(テンプルをまっすぐ伸ばした長さ)135mmを表記している。この表記法は□マークからボクシング・システムと呼ばれる。この三つの数字のうち前二者を足し合わせたものをFPDと呼ぶ。Fはフレーム、PDは pupil distance つまり瞳孔間距離、装用者の両目の瞳の間隔であり、FPDは元々の意味ではそのフレームが対象とするPDを意味する。つまり、FPD64mmとは、元々の意味ではPD64mmの人のためのサイズという意味であった。ただし今日では元々の意味と異なり、単にレンズ幅と鼻幅を足し合わせた数値である。かつて戦前から終戦後しばらくまでは工場で予め定型に仕上げられたレンズで眼鏡を作る場合があり、その場合フレームの選択によってレンズ中心の間隔を瞳の間隔に合わせていた。当時の眼鏡レンズはレンズの見た目の中心がそのまま光学上の中心であることが原則だったので、光学中心の間隔=右レンズの幅/2+鼻幅+左レンズの幅/2=レンズ幅+鼻幅=FPDで、FPDとPDを合わせれば左右の光学中心の間隔が瞳の間隔に合う仕組みであった。逆にいえば、PDが64mmの人ならばFPDが64mmのフレームを選ぶ必要があり、あえてPDと異なるFPDのフレームを選ぶならばPDのズレにより頭痛や眼精疲労を起こさぬように見た目の中心と光学中心とをずらしたレンズを作る必要があった。その意味で、当時はこの表記にはフレームを選択する上で重要な意味があった。今日でも眼科や眼鏡店で検査の際に仮に組み立てる眼鏡はフレーム選択によってPDを合わせる。つまり、PDが64mmの人にはFPDが64mmの、62mmの人には62mmの仮枠と呼ばれる仮のフレームで眼鏡を組み立てるが、かつては完成品の眼鏡もそのようにしていたわけである。今日では、工場で大きく作られたレンズを、店頭でフレームに合わせて小さく削りなおして眼鏡を組み立てており、眼鏡として完成した時点では、レンズの光学中心と見た目の中心とは異なるのが普通である。光学中心とPDとはレンズの削り方で合わせるので、FPDとPDとが合っていなくても光学上の問題は出ない。そうすることで多種多様なレンズの形を実現でき、また装用者のPDに合わせて複数のFPDのフレームを生産・在庫する必要もなくなった。その意味でこの表記には今日かつてほどの重要性はなく、中にはこの表記のないフレームもある。とはいえ、FPD 出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。