LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

ギンツブルグ-ランダウ理論

ギンツブルグ-ランダウ理論は、1950年にロシアで発表された超伝導を説明する現象論で、ランダウの相転移の理論と平均場理論を基にしている。Ψで表される秩序(オーダー)パラメータと呼ばれる超伝導の秩序の程度を表すパラメータを用いたのが特徴で、ベクトルポテンシャルAによるギンツブルグ-ランダウ方程式で表される。 この理論では、系のヘルムホルツの自由エネルギーについて、変分法によってその平衡状態を求めたとき、或る温度以下では電子対凝縮が起きた状態の方がエネルギーが低いことが示された。すなわち個々の電子として存在するよりも、もうひとつの電子と対を成す方がより安定である事を示した。この電子対は7年後に提唱されたBCS理論におけるクーパー対に相当する。またこの方程式から得られるパラメーターの比から第一種・第二種超伝導体の区別を与える。この理論によって、それまでの現象論であるロンドン理論の不足が補われた。ギンツブルグは本業績により2003年ノーベル物理学賞を受賞。ミクロ理論は、J.バーディーンらによるBCS理論(1957)。ギンツブルクとランダウは、超伝導を平均場理論を用いて考える際、秩序パラメータを複素数のマクロ波動関数とした。自由エネルギーはと、侵入した磁場の空間変動の特徴的な長さである磁場侵入長:がある。これらの比formula_3はギンツブルグ・ランダウパラメータと呼ばれ、磁場をかけたときの超伝導体の振る舞いを決定づける。formula_4では第一種超伝導体に、formula_5では第二種超伝導体になる。臨界磁場近傍など、秩序パラメータが小さいと考えられる場合は、formula_6の項を落とすことができてという線形化されたギンツブルグ-ランダウ方程式を得る。これはシュレーディンガー方程式と同じ形式をしているので、その解法を利用することができる。飽和を考えに入れると、第二種の超伝導に対し、ダスグプタ(Dasgupta)とハルペリン(Halperin)が示したように、相転移形は普通の状態では、第二オーダーである。一方、ハルペリン(Halperin)、ルベンスキー(Lubensky)、マ(Ma)が示したように、第一種超伝導は第一オーダーである。ギンツブルグとランダウのもともとの論文では、通常の状態と超伝導の状態の間をとりもつエネルギーに依存する 2つのタイプの超伝導が観察された。ギンツブルグとランダウの理論からの発見で最も重要な理論は、1957年に(Alexei Abrikosov)による発見である。彼は、ギンツブルグ-ランダウ理論を使い、超伝導の合金と薄膜の実験の説明をした。彼は、強い磁場の中の第二種の超伝導を発見し、場は磁束の量子化された六角形の格子状のチューブを貫通する。これを彼に因み(Abrikosov vortices)と言う。素粒子物理学では、唯一の古典的真空状態と(degenerate critical point)のあるポテンシャルエネルギーを持つ場の量子論は、ランダウ-ギンツブルグ理論と呼ばれる。時空の次元が 2 である N=(2,2) 超対称性理論への一般化は、カムラン・ヴァッファと(Nicholas Warner)の1988年11月の論文で提案され、この一般化は(superpotential)が退化する臨界点をもつことを意味している。同じ月に、ブライアン・グリーン(Brian Greene)とともに、これらの理論がくりこみ群やカラビ・ヤウ多様体上のシグマモデルと関係づいていると議論した 。また、エドワード・ウィッテン(Edward Witten)は、彼の1993年の論文 の中で、ランダウ-ギンツブルグ理論とカラビ・ヤウ多様体上のシグマモデルは、同じ理論の異なる相(phase)であると議論した。これらのモデルは、後日、ブレーンの構成のようなモノポールをもつ 4次元のゲージ理論の低エネルギー力学として記述することに使われている

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。