


数学において、数列 { "a" } の上極限(じょうきょくげん、limit superior)と下極限(かきょくげん、limit inferior)とは、"n" を無限に大きくしていったときの数列の挙動から決まる実数であり、この数列の極限に(ある意味で)なりうる値を上と下からおさえるために使われる。数列 { "a" } の上極限を表す記号にはの二種類がある。同様に下極限はと書く。数列 { "a" } の上極限はで定義される。同様に下極限はで定義される。数列 { "a" } の上極限と下極限は(無限大をとることを許せば)必ず存在する。これは極限値が存在するかどうか分からないのと対照的である。この2つの性質から導ける次の性質がもっとも重要である。数列の場合と同様にして、集合の列 { "A" } にも上極限と下極限が定義される。集合の列の場合は上極限と下極限が一致するときに集合の列は収束するといい、と書くことがある。これらは集合のかわりに集合の定義関数の列を考えれば、数列の場合の定義と一致する。集合列の上極限と下極限は確率論でよく使われる。確率論においては列として事象の列 { "A" } を考える。例えば、サイコロを無限回振るという試行を行い n 回目のサイコロの目が 1 であるという事象を "A" と呼ぶことにする。この事象の列の上極限・下極限もまた事象になる。この事象の意味は事象列の上極限と下極限も事象であるから、確率を計算することができる。サイコロの場合は上に書いたことから直感的にはとなりそうだが、定義に従って計算するのは難しい。この確率が 0 または 1 になる簡単な十分条件を与えるのが、ボレル-カンテリの補題である。黒田成俊 微分積分 共立出版, <共立講座 21世紀の数学>, 2002
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。