LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

結び目理論

結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。たとえば日常で、靴の紐などを蝶結びするとき、ちょっとした違いで縦結びになったり横結びになったりすることはよく知られていることである。このようなとき、結び目理論では、紐の両端をつないで輪の形にすることで、これらの結び目が図形としてどのように異なるか(あるいは同じものなのか)ということを数学的に明らかにすることができる。一般に、二つの結び目(あるいは絡み目)が同じであるかどうかは、ライデマイスター移動などの局所変形や交差の入れ替えなどの結び目解消操作を用いて調べられる。結び目や絡み目の分類は、結び目不変量 (knot-invariant) あるいは絡み目不変量 (link-invariant) と呼ばれる "量" の発見と構成を主として行われる。例えば、絡み目の外部の基本群を周辺構造 込みで考えたものは、結び目の完全不変量である。しかし、肝心の群の分類が容易ではないためこれを不変量として用いることはほとんどないようである。主に使われる不変量はアレクサンダー多項式などの多項式不変量や、結び目解消数 (unknotting number) などである。なお、Haken による正則曲面 の理論により、任意に与えられた 2 個の結び目が同値であるか否かを判定するアルゴリズムが存在することが知られている。近年では DNA やタンパク質の異性体の構造などの研究や統計力学・場の量子論にも関連して注目されている。結び目は3次元多様体の形状を調べることにも利用できる。同様のことを次元を上げて一般化して考えようとすると、4次元空間では1次元の閉多様体である結び目はほどけてしまって役に立たないが、2次元の多様体である閉曲面を使ってやれば目的を果たすことができる。これを4次元結び目理論、曲面結び目理論などと呼んで結び目理論に含めることもある。一次元球面(単位円周) "S" から三次元ユークリッド空間 R または三次元球面 "S"への単射連続写像 "K" あるいは "K" の像のことを結び目(むすびめ、"knot")という。ここで、三次元球面 "S" とは R に、一点 {∞} を付け加えたコンパクト等質空間である。要するに、三次元空間の中に浮かぶ絡まった 1 つの輪っかのことを数学では結び目というのである。日常語の意味での結び目とはかけ離れているように思われるが、紐の両端をくっつけて結び目を緩めた状態を想像してみると、なぜ上で言うようなものが数学で結び目と呼ばれるのか、実感できることと思われる。結び目は絡まった輪っか一つだけである。二つ以上の結び目が互いに絡まりあったものを考えたほうがいろいろと便利であることが多いので、それを絡み目(からみめ、"link")と呼ぶ。正確には結び目と同様に次のように定義される。いくつかの一次元球面の集合としての直和 "S" ∪ "S" ∪ … ∪ "S" から 三次元球面 "S" への単射連続写像 "L" あるいはその像のことを絡み目と呼ぶ。絡み目の連結成分の数を単に絡み目の成分数と呼ぶ。すなわち "n" 個の "S" の直和を埋め込んだ絡み目の成分数は "n" である。有名な絡み目としてはホップ絡み目、ホワイトヘッド絡み目、ボロミアン環などが挙げられる。絡み目を離れた2つの部分に分けることができるとき、その絡み目は分離可能(splittable)であるといい、成分数と同じ数だけの部分に離して分けることができる場合は完全分離可能であるという。つまり、絡み目が2つ以上の連結成分のある射影図(#結び目の表示で後述)を持つときに分離可能であるといい、成分数と等しい個数の連結成分のある射影図を持つときは完全分離可能であるということになる。結び目を切ったり貼ったりしている間に絡み目が現れることがあり、結び目のみを研究の対象とする場合でも絡み目を合わせて考えるほうが自然であることも多い。絡み目の定義を少し変形拡張した概念が幾つか提唱され、特に以下のものは活発に研究されている。結び目・絡み目の成分が多辺形となっているとき、その結び目・絡み目は折線状(polygonal)であるという。また、結び目・絡み目が折れ線状に表せるとき、その結び目・絡み目は馴れた結び目・絡み目(tame knot/link)または順な結び目・絡み目であるといい、そうでないときは野性的な結び目・絡み目(wild knot/link)であるという。結び目理論では、通常は野性的な結び目・絡み目は除外して考えるため、一般的な結び目の表などに記載されているものはすべて馴れた結び目である。結び目を定義した際に使った連続写像 "K" に対して微分可能という条件をつけておけば自動的に野性的な結び目を排除することができる。結び目には円周を一周する向きにしたがって向きが入る。一つの結び目には正逆二つの向きを入れることができる。また、それぞれに成分について向きをつけることによって絡み目の向き付けもできる。向きをつけた結び目(絡み目)を、有向結び目(有向絡み目)という。向き付けられた結び目(絡み目)の向きを逆にしても元の結び目(絡み目)と同じになるとき、その結び目(絡み目)は可逆または可反であるという。例えば三葉結び目、8の字結び目は可逆となっている。交点数が少ない結び目は可逆のものが多く、交点数が最も小さい非可逆で素な結び目は8交点のものである。結び目(絡み目)は三次元空間に浮かんでいるが、これを二次元に射影して二次元の曲線のように表現することができる(ふつうは平面に射影する)。この図式のことを射影図(しゃえいず)または投影図(とうえいず)などという。このとき、という条件を満たすように射影することを正則表示(せいそくひょうじ、regular presentation)という(どんな結び目や絡み目でも適当に位置をずらすことによって正則表示することができる)。正則表示された結び目の図式を正則図式といい、結び目理論においては単に射影図といえば正則なものをさすことが多い。正則図式において、結び目(絡み目)の2箇所の成分が1点に写されているところを交点または交差点といい、奥にある線の上を手前にある線が横切るとき、その交点で奥にある線がちょっと切れているように描けば、線の前後関係を損なうことなく結び目を二次元に射影することができる。結び目(絡み目)の射影図の中に右図のように簡単に取り除ける交点があるとき、それを除去可能な交点または無駄な交点という。除去可能な交点を全て取り除いた射影図は既約射影図(きやくしゃえいず)といわれる。結び目(絡み目)を射影図として図示するほかにも、以下のような表示方法がある。すべての結び目と絡み目は,基本的な4種類のタングルのみを用いた正則表示として,平面上に表現できる。この正則表示を2重性並行表示(にじゅうせいへいこうひょうじ)という。2重性並行表示の特徴から,すべての結び目と絡み目が3-正則平面グラフ(重み付き)と対応がとれるとの報告がある。即ち,すべての結び目と絡み目は,(重み付き)3-正則平面グラフで表現できることになる。まず,基本的なタングルとして,formula_3-タングル,formula_4-タングル,formula_5-タングル,formula_6-タングルの4つを図示する。なお,上図のformula_7-タングルは,formula_5-タングルを変形したタングルである。例として,以下に三葉結び目3と結び目8の2重性並行表示,および,その重み付き3-正則平面グラフを図解する。なお,formula_3-タングル,formula_4-タングル,formula_5-タングル,formula_6-タングルの重み付き平面グラフの部分を以下に図解する。3交点から11交点までの結び目および絡み目の2重性並行表示と重み付き3-正則平面グラフが,The Knot Atlasに掲載されている。また,別の報告で,3-正則平面グラフの全域木を用いて,結び目を構成する方法の記述もある。位相幾何学では、連続写像を用いて連続的に変形して互いに一致させることができる図形は同相といって、一般に同じものであると考える。結び目理論も位相幾何学の理論であるから、同様な同一視を行うのであるが、しかしいかなる結び目も円周 "S" と同相であるので、同相であるかどうかを見るだけではどんな結び目も区別することはできない。そこで、与えられた結び目が、ある結び目を切ったり貼ったりすることなく連続的に変形していったものと一致するなら、もともと 2 つの結び目は同じであったと考える。これは、結び目のみならずその周辺の空間まで含めて連続的に変形できるかどうかということであって、以下のように定式化される。2 つの結び目 "K

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。