LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則から1864年にジェームズ・クラーク・マクスウェルが数学的形式として整理し導いた。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。(微分形による)マクスウェルの方程式とは以下の連立偏微分方程式である。ここで は電場の強度、 は磁束密度、 は電束密度、 は磁場の強度である。また は電荷密度、 は電流密度である。記号「」、「」はそれぞれベクトル場の発散と回転である。電束密度 と磁場の強度 は、電磁場の媒質中での振舞いを表現する量である。媒質の性質を他の部分で表現することにより、電場の強度 と磁束密度 により方程式を記述することが出来る。媒質が存在しない真空中(自由空間中)においては、、 はそれぞれ 、 との関係にある。ここで は真空の誘電率、 は真空の透磁率であり、これらは普遍定数である。このとき方程式はとなって 、 により記述される。線型媒質中においては、、 は線型関係によって 、 と関係付けられる。ここで 、 はそれぞれその媒質の誘電率と透磁率であり、媒質の性質を特徴付ける物性値である。これらは一般にはテンソルであるが、等方的な媒質ではスカラーとなる。さらに一様な媒質であると考えれば、マクスウェルの方程式はと変形できて 、 により記述される。一般の媒質中においては、、 と 、 を関係付ける量として、誘電分極 と磁化 がによって導入される。このとき、方程式はとなる。さらに分極電荷密度、分極電流密度、磁化電流密度をとして導入すれば、方程式は+oldsymbol{j}_P+oldsymbol{j}_M ight)となる。これは真空中におけるマクスウェルの方程式と同じ形をしている。媒質は原子核や電子などの荷電粒子から構成されている。これらが真空中に分布しているものとして考えたときの電荷の分布が formula_1 である。一方、媒質を構成する荷電粒子はマクロに見たとき、分子、或いは原子として束縛されている。電荷の分布を平均化した後の分布が 、 である。マクスウェルの方程式は、次の2つの組に分類されることが多い。第1の組は、である。この式は電磁場の拘束条件を与える式である。(ビアンキ恒等式)この式は E,B を電磁ポテンシャル φ, A により、と表せば恒等的に満たすように出来る。マクスウェル自身の原著論文『電磁場の動力学的理論』(1865年)や原著教科書『電気磁気論』(1873年)ではこのように表されていたが、1890年になってヘルツが改めて理論構成を考察し、上記2式から電磁ポテンシャルを消去した (1a), (1b) を基本方程式とすることを要請した。このヘルツによる電磁ポテンシャルを消去した形をマクスウェルの方程式と見なすのが現在の主流となっている。この見かたでは (0a)と(0b)は電磁場の定義式と見なされる。第2の組は、である。電荷、電流の分布が電磁場の源となっていることを表す式である。(電磁場の運動方程式)電磁場の微分(左辺)が電荷、電流の分布(右辺)によって書かれており、電荷、電流の分布を与えると電磁場の形が分かるという方程式になっている。この式から、電荷、電流の分布には電気量保存則(連続の方程式)が成り立つことが導かれる。また、電磁場はローレンツ力により電荷、電流の分布を変動させる。それぞれの組は時間微分を片側に移し、 ablacdotoldsymbol{B} =0 ablacdotoldsymbol{D} = hoと変形すれば、時間発展の方程式とその初期条件と見ることができる。また、E,Bにより記述した場合は式の組み合わせを変えてとして、ベクトル場の発散と回転を与える式と見ることができる。それぞれの解釈は次の通り。(1a) : 磁束保存の式 … 磁場には源がない。(1b) : ファラデー-マクスウェルの式 … 磁場の時間変化があるところには電場が生じる(電磁誘導)。(2a) : ガウス-マクスウェルの式 … 電場の源は電荷である。(2b) : アンペール-マクスウェル … 電場の時間変化(変位電流という)と電流とで磁場が生じている。これらの方程式系に整理されたことから、電場と磁場の統一(電磁場)、光が電磁波であることなどが導かれ、その時空論としての特殊相対性理論に至る。後年、アインシュタインは特殊相対性理論の起源はマクスウェルの電磁場方程式である旨、明言している。マクスウェルが導出した方程式はベクトルの各成分をあたかも互いに独立な量であるかのように別々の文字で表して書かれており、現代の洗練された形式ではなかった。これを1884年にヘヴィサイドがベクトル解析の記法を適用して現在の見やすい形に書き改めた。しかも彼は既にそこで電磁ポテンシャルが消去出来ることを示して、方程式系を今日我々が知る形に整理していた。しかし、その意義は直ちには認められるに至らず、それとは独立に上記のヘルツの仕事がなされた。ベクトル記法が一般化し始めるのは 1890年代半ばであって、ヘルツの論文ではまだそれを使っていない。いずれにせよ、このベクトル解析の記法の採用は場における様々な対称性を一目で見ることを可能にし、物理現象の理解に大いに役立った。次に、ベクトル解析を用いて、4つの方程式(成分表示で8つの式、テンソル表示で2つの式)を説明する。B は磁束密度(単位はテスラ T )。積分形で表すと次の式になる。ここで dA は、領域の外側へ向かう方向と直交する閉じた曲面 A 上の微小な方形の領域である。電場の積分形と同様に、この式は閉曲面上を積分したときにのみ意味がある。上の式は磁場の構造と関係がある。なぜなら、与えられるどんな体積要素についても、表面 A の外側の点のベクトル成分の総和が内側の点のベクトル成分の総和に等しくなるからである。このことは、構造的に見て、磁力線が閉曲線でなければならないことを意味する。またこの式は、磁力線はどこかを起点とすることも終点とすることもできないことを意味する。すなわち磁気単極子(モノポール)が存在しないことを示唆する。もし、磁気単極子が発見されたならば、上の式は次のように変更されなければならない。ここで ρ は磁気単極子の磁荷密度である。この式を積分形で表すと次の式になる。ただし、ここで φ は磁束保存の式で記述された面積 A を通過する磁束、V は面積 A の縁の周囲の起電力である。この式は、閉じていない曲面 A についてのみ働く。なぜなら磁束保存の式の説明で述べたように、閉じた曲面を通る磁束の総和は常に 0 だからである。起電力はその曲面 A の縁に沿って測定されるが、閉じた曲面には縁がない。いくつかの電気工学の文献では、曲面 A の縁に巻かれたコイルの数 N を磁束の導関数の前に用いてこの積分形式を表現している。なお、式中の負号があるため、磁束密度の時間微分が正なら左回転に、負なら右回転になる。この式は、電磁誘導に関するファラデーの法則(電磁誘導の法則)の定式化であり、非常に多くの実用的な応用、例えば電動機(モータ)や発電機に関係している。ここで、ρ は、電荷密度(単位は C/m)。D は電束密度(単位は C/m)で、「線形な物質」中では D = ε E となる。(E 電場の強度、ε 誘電率)の積になる。電場が非常に強くない限り、どんな物質も「線形」なものとして扱うことができる。上の式は、電束は電荷の存在するところで発生・消滅し、それ以外のところでは保存されることを意味している。真空の誘電率は ε と書かれ、次の式で表される。また、ε = ε / εで定義される比誘電率などが用いられることもある。ガウス-マクスウェルの式を積分形で表すと次の式になる。ここで dA は、電荷の外側へ向かう方向と直交する閉じた曲面 A 上の微小な方形の領域であり、Q はその閉曲面当たりの電荷である。この積分形は、閉曲面上を積分したときにのみ意味があり、ガウスの法則としてよく知られている。また、この式はクーロンの法則に相当するものである。ここで j は電流密度。H は磁場の強度(単位は A/m)で、「線形な物質中」で「磁場の強度が小さい範囲」において、 B = μ H の関係がある。(B 磁束密度、μ 透磁率)真空中では透磁率 μ は真空の透磁率 μ = 4π×10 W/Am で置き換えられる。したがって式は次のようになる。積分形は次のようになる。s は開曲面 A の縁となる曲線で、I は曲線 s で囲まれた曲面 A を通過する電流( I = ∫j · dA)である。コンデンサや ∇ · j ≠ 0 となるほかの場所がなければ、右辺の第 2 項(変位電流)は一般に無視される。なお、この式は、アンペール-マクスウェルの法則としても知られている。これらの式は、電磁波の波動方程式を導き、電磁波とはなる速度で移動する波動であると結論付けられる。ここで、真空の誘電率と透磁率の各値から導かれる定数 の値が光速度の値とほとんど一致することから、マクスウェルは光は電磁波ではないかという予測を行なったのである。その予測は1888年にハインリヒ・ヘルツによって実証される。ヘルツはマクスウェルの方程式の研究に貢献したので、マクスウェルの方程式はマクスウェル-ヘルツの(電磁)方程式と呼ばれることもある。19世紀後半を通じて物理学者の大半は、マクスウェルの方程式において光速度が全ての観測者に対して不変であるという奇妙な予測のために、またそれがニュートン力学の運動法則と矛盾したために、これらの方程式が電磁場への近似的なものに過ぎないと考えた。しかし、1905年にアインシュタインが特殊相対性理論を提出したことによって、マクスウェルの方程式が正確で、ニュートン力学の方を修正すべきだったことが明確になった。これら電磁場の方程式は、特殊相対性理論と密接な関係にあり、ローレンツ変換に対する不変性(共変性)を満たす。磁場の方程式は、光速度に比べて小さい速度では、相対論的変換による電場の方程式の変形に結び付けられる。電場と磁場による表現では、共変性が見にくいため、4元ポテンシャル A を考える。但し、重複するギリシャ文字に対してはアインシュタインの縮約記法に従って和をとるものとし、計量テンソルは で与えるものとする。また、各ギリシャ文字は 0,1,2,3 の値を取り、0は時間成分、1,2,3は空間成分を表すものとする。特に時空の座標については("x

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。