LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

体上有限生成環の理論

体上有限生成環 (たいじょうゆうげんせいせいかん; finitely generated ring over a field)とは、ある(可環な)体 "k" 上有限個の元で生成される可換環の事を言う。"k" 上の多項式環 "k"["x" , ... , "x"] の剰余環として得られる環といっても同じである。体上有限生成環は、可換環論的見地からはネーター環の重要な例でありヴォルフガング・クルルらによるネーター環のイデアル論のひな形であった。また体上有限生成環の理論は代数幾何学におけるアフィン代数多様体の理論、すなわち、代数多様体の局所理論と本質的に等価である点からも重要である。本項では、ネーターの正規化補題 (Noether normalization lemma)、有限生成整域の次元論、ヒルベルトの零点定理 (Hilbert's Nullstellensatz) について説明する。可換環 "R" を部分環として含む(可換)環 "A" の元 "a" , ... , "a" が "R" 上代数的独立であるとは、変数 "x" に "a" を代入する操作で得られる準同型 "R"["x" , ... , "x"] → "A" が単射であることを言う。"A" を体 "k" 上有限生成な環とするとき、"k" 上代数的独立な "A" の元 "a" , ... , "a" が存在して、"A" はその部分環 "k"["a" , ... , "a"] 上整である。更に、"I" が "A" の高さが 1 のイデアルであれば、"a" ∈ "I" かつ "I" ∩ "k"["a" , ... , "a"] = ("a") とできる。"A" を "k"["x" , ... , "x"] の剰余環として表し、"A" における "x" の像を "y"とする。"k"["x" , ... , "x"] → "A" が単射であれば定理の主張は自明。したがって準同型の核 "I" が0でないと仮定し、"n" が減少する帰納法で証明する。"z" (i=2, 3, ... , n) を、自然数 "r" を使ってで定めると、"I" に属する多項式 "f" があって "f"("y" , ... , "y")=0 なので、特にを得る。"r" を formula_3 ととれば、この関係式はとなるが、これは、"y" が "A" の部分環 "k"["z" , ... , "z"] 上整であることを示す。同じ議論を繰り返せば高々 "n" 回までの操作で定理の前半が示された。後半については、"g" ∈ "I" ∩ "k"["a" , ... , "a"] を取り、前半と同様 formula_5なる置き換えを上手く取ると、とできる。従って、"k"["a" , ... , "a"] は部分多項式環 "k"["g" , "b"... , "b"] 上整。よって、整拡大の推移性より、"A" は "k"["g" , "b"... , "b"] 上整になる。("g") ⊂ "I" ∩ "k"["g" , "b"... , "b"] は明らかであるが、("g") は "k"["g" , "b"... , "b"] の高さが 1 以上の素イデアルである一方で、下降定理 (going-down theorem) (整拡大 参照)によって、"I" ∩ "k"["g" , "b"... , "b"] の高さは 1 なので、高さの定義より ("g") = "I" ∩ "k"["g" , "b"... , "b"]とならなければならない。"A" を体 "k" 上有限生成な整域とするとき、"A" のクルル次元はその商体の "k" 上の超越次数と等しい。とくに、"A" の極大イデアル "m" をとると、体 "A" / "m" は "k" の代数拡大体である。より強く"A" の素イデアルの列で、"P" は極大イデアルであり、"P" と "P" の間には素イデアルが存在しないようなもの(飽和した素イデアル列)を取ると、"r" が "A" の商体の超越次数と一致することを示す。正規化補題によれば、"A" は多項式環と同型なその部分環 "k"["a" , ... , "a"] 上整であり、"m" は "A" の商体の "k" 上の超越次数と一致する。"r" の帰納法で示す。"r" = 0 ならば "A" は体であるので、"k"["a" , ... , "a"]も体になり(整拡大参照)"m" = 0 = "r" となる。" m " > 1 の時は、正規化補題の後半により、帰納法の仮定を "A"/"P" と "k"["a" , ... , "a"] に適用すれば、定理の前半を得る。後半は、"A" / "m" のクルル次元は 0 であることを前半に適用して、"A" / "m" の "k" 上の超越次数が0であることから従う。体上有限生成環 "A" の素イデアルは、それを含む極大イデアルの共通部分として書ける。すなわち、体上有限生成環はジャコブソン環 (Jacobson ring) である。"A" の素イデアル "P" をとって、剰余環 "A" / "P" を考えることで、"A" を体上有限生成整域として、そのすべての極大イデアルの共通部分が 0 になることを示せば良い。"A" の 0 でない元 "f" を取り、"M" を局所化 "A"["f"] の極大イデアルとし、"m" = "M" ∩ "A" とおく。作り方より "m" は "f" を含まない。よって、"m" が "A" の極大イデアルであることを示せばよい。いま、"A"["f"] は体上有限生成整域であるから、次元定理(の後半)によって、"A"["f"] / "M" は "k" 上代数的な体なので、その部分環 "A" / "m" も "k" 上代数的である。よって、特に "A" / "m" は体であるので "m" は極大イデアルである。本項記述は下記参考文献中、特に永田の第4章を参考にした。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。