LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

超準解析

超準解析(ちょうじゅんかいせき、Nonstandard analysis)とは、超実数やその上の関数について研究する解析学の一分野である。直訳すれば非標準解析学といった意味であるが齋藤正彦が超準解析という訳語を使い始めたためそのように呼ばれるようになった。無限小解析と同一のものとも見なされる。超準解析ではイプシロン-デルタ論法によって一度は数学から追放されたと思われた、無限小や無限大という極限に関する古典的で直観的な感覚、すなわち、いわゆる実数論にもとづかないライプニッツ流の古典的な微積分を数学的に厳密に定式化し、取り戻すことができる。このような古典的な微積分におけるオリジナルな無限小解析学とは区別されることもある。アブラハム・ロビンソンによって考案された。超準解析の基本的な手法である超積はアラン・コンヌらによって作用素環の研究に応用されてもいる。超実数(ちょうじっすう、hyperreal numbers)は実数を拡張した数概念である。実数体に無限小・無限大を加えたものは体をなし、超実数体と呼ばれる。超実数体は R, R などと表記される。その元を超実数という。ただし、無限小や無限大は 1 点ではなく、例えばある無限小について、それより小さい無限小、大きい無限小が存在する。無限大に対しても同様。また、1つの超実数の周りには、それと無限に近い超実数が無数に存在する。超実数は数学的に厳密に構成することができる。しかし、標準的な超実数の構成には数学基礎論の手法が用いられており、ある程度の基礎論に関する知識を要する。超実数の構成は実数の構成によく似ていて、実数からなる数列に対して一定の同一視操作(例えば有限項の違いは無視する)をしたものを新たな数と見なすというものである。超準解析における超準とは、実数体の超準モデルを用いることからきている。超準解析では、1つの対象に対して2通りのモデルを考える。2通りのモデルのうち、1つのモデルはもう1つのモデルを含むものである。17世紀にニュートンやライプニッツが微分積分学を創始したとき、彼らは極限や収束の概念を極めて素朴に考えていた。後になって、ワイエルシュトラスの ε-δ 論法の発明により微分積分学は厳密化され、無限小や無限大という概念によらずに議論できるようになった。これにより、収束性に関する直観的なイメージをそのまま議論に用いる方法は廃れた。ニュートンやライプニッツ以来300年間厳密に定義されなかった無限小量は ε-δ 論法の登場によって一旦は追放された。しかし1950年代に登場したモデル理論を初めて応用することで、1960年代にアブラハム・ロビンソンは超実数を考案して、古典的な無限小・無限大の概念を数学的に厳密な形で正当化し、無限小解析をそのままの形で蘇らせることに成功した。このロビンソンの理論が超準解析と呼ばれるものである。ジェロム=キースラーは、微積分の展開に最低限必要な前提を単純な公理としてまとめることに成功する。ここから R のコーシー完備性が次のようにして導かれる。いま formula_1 を R のコーシー列とする。すると無限大超自然数 formula_2 に対して formula_3 は有限超実数であることが分かる。これに無限に近い(一意的な)実数を formula_4 とすれば、formula_5 が成り立つ。もう1つの同値な公理系がある。ここで変数 "x

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。