揚水発電(ようすいはつでん、)は、夜間などの電力需要の少ない時間帯の余剰電力を使用して、下部貯水池(下池)から上部貯水池(上池ダム)へ水を汲み上げておき、電力需要が大きくなる昼間時間帯に、上池ダムから下池へ水を導き落とすことで発電する水力発電方式である。すなわち実質的には、発電だけを目的とする発電所というよりも、電力需要・供給の平準化を狙う蓄電を目的した、ダムの水を用いて、電力を位置エネルギーとして蓄える巨大な蓄電池、あるいは蓄電所と言うべきものである。発電する電気量に対し、水を汲み上げるために、消費される電気量がおよそ30%割増ではあるが、大量の電力を貯蔵できる設備は、現在のところ揚水式発電所が唯一である。一般的に電気は1日の内の昼間に多く消費され、夜間は需要が小さくなるため、需要のピークとオフピークには大きな差ができる。電力は基本的に貯蔵ができないため、電力会社は仮にピークの時間が僅かであっても、そのピークに対応できる発電設備を保有しなくてはならない。それゆえピークに備えた電力設備は大部分の時間で利用されないため、設備利用率は一般的に低く、設備投資の削減の観点からもピークとオフピークの差は小さいことが望ましい。揚水式発電を用いれば、設備利用率が特に悪化する夜間に既存発電設備の発電する電力で水をくみ上げ、需要がピークとなる昼間に発電を行うことで、ピークとオフピークの差を埋めることができ、設備利用率の全体的な向上が図れる。また、電力会社は常に変動する電力需要に発電量を調整する必要があるが、揚水式発電所は短時間での起動停止が容易であり、負荷に対する追従性も高いため、調整用発電所としても利用される。揚水発電は世界的にも行われているが、電力系統が他国から独立し、電力需要のピークとオフピークの差が大きい日本で特に普及した蓄電方法である。formula_12014年11月、経済産業省は同省が実施した集計により、2013年度の揚水発電所設備利用率が全国でわずか3%にしか達していないことが判明したと発表した。日本国内に40ヶ所以上、総出力2,600万kwと世界最大規模の施設がありながら、100%フル稼働で運転したと仮定した際の発電量と実発電量を比較したところ設備利用率がわずか3%で、2010年以降の利用率はほぼ横ばいのままほとんど変化していないことがわかった。この3%という値はアメリカやドイツの利用率10%と比較すると非常に低い値である。これは、日本の揚水発電所が総出力においては世界最大規模ではあるものの、個々の貯水量に関しては欧米のそれに比べ小規模であるため、設備利用率において欧米レベルの運用を実施することが物理的に不可能なためである。揚水機の多くは三相同期電動機が使われる。汲み上げ時に電動機を停止状態から同期速度まで回転させるために以下のような始動装置が必要であり、仮に停止状態で給電すれば揚水機のコイルが過熱する恐れがある。揚水発電所では、各揚水機ごとに異なった始動方式を採用する場合もある。全方式に共通なのは、揚水運転開始時に水車が水中にある状態では非常に大きな始動トルクが必要となり、容易には始動できない。このため、始動時にはガイドベーンを全閉にして、圧縮空気を注入し、水車を空気中で定格回転数にしたのちにガイドベーンを開放して揚水運転を開始している。日本初の揚水発電所は、1934年4月に完成した長野県、野尻湖のほとりにある池尻川発電所である。その1か月後、富山県で1931年に完成している既設の普通水力発電所、小口川第三発電所に揚水ポンプが追加別置され、揚水発電所として運転開始した。以下に示すのは、一般的な揚水機の起動過程である。ここでは三相同期発電電動機とポンプ水車 (VFR-1RS) で構成される可逆式揚水機を一例とする。可変速揚水発電(かへんそくようすいはつでん)は、ポンプ水車を可変速発電電動機で駆動し、揚水時の消費電力を可変とするものである。これは揚水機は、回転数・揚程(落差)・ポンプ水車の3要素で揚水に必要な電力が決まるのだが、従来の揚水機は同期機のために回転数が一定、ゆえに揚水電力は一定で調整が不可能であった。しかし近年の原子力発電・大規模石炭汽力発電などの割合の増加、昼間と夜間の消費電力の差の増大などで夜間の調整能力の余裕が少なくなっている。そのために揚水機を起動した際の急激な系統負荷の変動が問題となってきた。そこで可変速揚水機が夜間の電力出力調整用の設備として注目されている。その他に可変速揚水機の利点としては、ポンプ水車の効率が最高となる回転数が発電運転時と揚水運転時で異なるので、運転時の損失を少なくすることができる。一般的な同期機は直流励磁の回転子で固定回転数・固定周波数であるが、可変速機はサイクロコンバータにより低い周波数の交流を得て回転子を励磁し、可変回転数・固定周波数を実現している。1981年(昭和56年)に、日立製作所と関西電力が共同で開発を始め、1987年(昭和62年)に成出発電所(富山県)で実証プラントを建設(22MW)して世界で初めて実用化し、その後、大河内発電所向けに世界最大の容量(400MW)の発電機を設置している。海水揚水発電(かいすいようすいはつでん)は、海を下池とみなした揚水発電。下池のためのダム建設が省略できるので、建設コストを大幅削減でき開発可能地点も広がるが、海水を利用するため水車や水圧管路にはすぐれた耐食性が要求される。また海生生物や海水を地上に上げることによる環境影響等も考慮しなければならない。電源開発が建設した沖縄やんばる海水揚水発電所で実証試験が行われていたが、2016年7月19日付で廃止された。島であるため、水力発電所が殆どゼロに近い上に他の電力会社との連係が不可能な沖縄電力では、貴重な調整力として活用されていた。スプリッタランナは東芝と東京電力が共同で研究・開発した、新しいフランシス形ポンプ水車ランナである。従来のフランシス形ポンプ水車ランナは羽根(ランナベーン)の長さが一様であったのに対し、スプリッタランナでは長い羽根(長翼)と短い羽根(短翼)とが交互に配置されているのが特徴である。最新の流体力学による再設計とあわせて効率の向上と振動・騒音の低減を実現した。スプリッタランナはまず東京電力安曇発電所 4号機で採用された。同発電所では従来、長さが一様で6枚羽根のフランシス形ポンプ水車を採用していたが、修理工事に伴い長翼4枚・短翼4枚、合計8枚の羽根を持つスプリッタランナに更新された。その後は同発電所 3号機が同ランナへと更新、そして2005年12月に営業運転が開始された東京電力神流川発電所では、超高落差での使用に対応した長翼5枚・短翼5枚、合計10枚の羽根を持つスプリッタランナが採用されている。以下は日本に建設された揚水発電所の一覧である。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。