ホッジ予想(ホッジよそう、)は、代数幾何学の大きな未解決問題であり、非特異複素多様体と部分多様体の代数トポロジーに関連している。ホッジ予想は、複素解析多様体のあるホモロジー類(ホッジ類)は、代数的なド・ラームコホモロジー類であろう、つまり、部分多様体のホモロジー類のポアンカレ双対の和として表されるようなド・ラームコホモロジー類であろうという予想である。この定式化は、スコットランドの数学者(William Vallance Douglas Hodge)により、1930年から1940年のド・ラームコホモロジーの記述を、複素多様体の場合に存在する余剰な構造を含む記述へと拡張する仕事の結果として得られた。1950年の米国のマサチューセッツ州ケンブリッジで行われた、国際数学者会議でホッジが提起すると、ホッジ予想は非常に注目をあびるようになった。クレイ数学研究所は、ミレニアム懸賞問題の一つとして、解決者に対して100万ドルの懸賞金を支払う事を約束している。"X" を複素 "n" 次元のコンパクトな複素多様体とすると、"X" は実 2"n" 次元の向き付け可能な微分可能多様体である。従って、"X" 上のコホモロジー群は 0 から 2"n" まで以外では消える。"X" をケーラー多様体と仮定すると、複素数を係数とするコホモロジーの分解が存在して、となる。ここに "H("X") は、タイプが ("p
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。