数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、)は、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、"曲線の下部の面積"を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。"ルベーグ積分" (Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線の部分集合上定義された関数を積分するという特定の場合を意味することもある。積分を厳密なものにしようという動きは、19世紀に始まる。ベルンハルト・リーマンが提案したリーマン積分は大きな前進であった。リーマンは関数の積分を「簡単に計算できる積分」で近似することによって定義した。この定義による積分は、それまで解答が知られていた問題に対して予想通りの結果をもたらしたし、他の問題に対しても新しい結果を与えることになった。しかし、リーマン積分は関数列の極限との相性が悪く、そのような極限と積分が同時にあらわれるような局面では困難な解析を必要とする場合があった。それに対して、ルベーグ積分においては、積分記号のもとでの極限がより扱いやすくなっている。ルベーグ積分では、リーマンとは異なる形の「簡単に計算できる積分」を考えており、このことがルベーグ積分がリーマン積分よりよく振舞う理由となっている。さらに、ルベーグ積分ではリーマン積分より広い種類の関数に対して積分を定義することが可能になっている。例えば、無理数で 0 を有理数で 1 をとる関数(ディリクレの関数)はリーマン積分では積分が定義されないが、ルベーグ積分では積分できる。以下ルベーグ積分のよく知られた構成法を示す。この方法は二つの章に分けられる。この二つの章の内容は、直感的には円柱や三角柱の体積を計算する前に底面積を計算し、ついで、高さをかけるという作業に似ている。すべての平面図形の面積を定義するのが最初の章であり、その図形を底面とする複雑な立体の体積を計算するのが第二の章である。当初、測度論は線分、平面図形、立体などの長さ、面積、体積などの精密な解析のために考え出されたものである。特に 実数全体の集合 R の部分集合について、その部分集合の長さとは何か、という問いに対して整然とした解答を与えるものであった。集合論の発展によって、自然な加法性を持ち、平行移動不変になるように、実数体 R のすべての部分集合に長さを定義することが不可能であることがわかった。このことにより、可測集合と呼ばれる種類の部分集合にのみ長さを定義する必要が生まれた。測度が満たすべき適当な条件については測度論を参照されたい。現代では測度と積分は公理的に定義される。測度というのは、集合 "X" の適当な条件を満たす部分集合の族 Σ 上で定義された適当な条件を満たす関数 "μ" であれば何でもよく、"X" がユークリッド空間であったり、Σ の元が面積を計算したい図形であったりする必要はないし、"μ" の値が面積とかけ離れたものでもよい。そこで、ユークリッド空間の図形の面積を与える測度は特別にルベーグ測度という名前がついている。リーマン積分では長方形 ["a
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。