LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

自動列車停止装置

自動列車停止装置(じどうれっしゃていしそうち、ATS: )は、鉄道での衝突防止や過速度防止の安全装置(=自動列車保安装置と呼ぶ)の日本での分類の1つ。列車や軌道車両が停止信号を越えて進行しようとした場合に警報を与えたり、列車のブレーキを自動的に動作させて停止させ、衝突や脱線などの事故を防ぐ装置である。日本工業規格のJIS E 3013(鉄道信号保安用語)では、以下のように定義されている。ATSには停止信号による自動停止機能のほかに、停止信号また信号現示に関わりなく制限速度設定を超えた場合に警報・減速または停止させる機能がついたものもある。日本の鉄道と軌道法において一般的な自動列車保安装置であるが、鉄道事業者や軌道経営者によってその内容は大きく異なり、機能自体はATCと遜色のないものを使っている事業者もある。しかしながら、ATSにおいて安全走行を確保する主体は運転士であり、ATS装置は運転士のヒューマンエラーに対するバックアップが目的であるのに対し、ATCにおいてはATC装置が安全走行を確保する主体となっている点が異なる。日本以外の国においては、安全装置の考え方が違い区分法が違うので、ATCを含め直接の対応語はない。そのため同様の機能の装置に様々な命名があり、AWSと称しているところもある。ATSの歴史は過去に発生した鉄道事故と、その教訓による改良の繰り返しの歴史とも言える。ATSの機能としては大別して信号現示に対して働く衝突防止のATSと、信号現示とは独立に進行信号で働く過速度に対するATSがある。また、運転上の取扱い方法は大きく2タイプに分けることができる。ATS装置には、様々な構造があり、メーカーから各事業者に納入されていて、同一路線で併用・機能分担されているものもあるので事業者毎の説明にはなじまない部分があり、構造・分類を概説する。ATSの制御情報を地上から車上に伝える方式とその装置にはいくつかの種類がある。ATSの制御情報を連続的に車上に伝えるものを「連続制御」、地上子など1点で情報を伝えるものを「点制御」としている。なお、この区別は、情報の伝達に関するものであり、受けた情報に基づく速度照査の方法とは異なる。「点制御」の場合にも、速度照査に関して、地上子から受けた情報を即時に照査する「点照査」の方式と、地上子からの情報を記憶して連続して照査する「連続照査」の方式がある。ATSは、基本的には以下の装置によって構成される(詳細は後述「ATS動作・構造」参照)。地上装置と車上装置で情報を送受信する方式には、大まかに分けると以下の方式がある。実際には、送受信の方式が同じ場合でも地上子やレールに流す信号の周波数や電文(コード)地上子の設置場所などが事業者によって異なるため、さらに細かく分けられている。地上、車上ともに信号の周波数などを含めた方式が一致して初めてATSがシステムとして有効になる。ATSの持つ「地上から列車にブレーキを動作させる」仕組みを利用したものとして、踏切防護装置、曲線速度制限装置、分岐器速度制限装置が存在する。軌道回路とは左右の線路を電送線とし閉塞区間先端から入り口に向け信号電流を送り車軸が左右を短絡することで、閉塞入り口には信号電流が届かなくなって在線を検知して停止信号となり、一方車軸での短絡で1巻きのコイルを構成してこれを受電器で拾って地上から車上に情報を流す方式をいう。連続制御可能であり、信号現示の変化に対しての追従性が良い。ATS-B、1号型ATS、C-ATS、阪急ATS、ATCなどで使われている。軌道回路に流す信号電流の種類により商用周波数軌道回路、分倍周軌道回路、AF軌道回路、と分けられる。列車在線検出のための信号電流と、信号現示を列車に伝えるための信号電流があり、ATS-Bや新幹線ATCでは両者が兼用されているが、後日ATSを拡張設置した場合などは別の信号電流として重畳するものもある。情報を受け渡すための地上装置一般。動作原理により変周式、トランスポンダ式などがあり、これを基準に制御する場合が「点制御」となる。ただし、「点制御」で受信した速度制限値などのデータを記憶して参照する場合には点制御でも「連続照査」「連続参照」となり、単純な「点照査」に比べ保安度は高まる。変周式とは、車上受信器である車上子が、特定の共振周波数を持つLC回路で構成される地上子の上を通過すると、電磁結合により車上子の発振周波数が地上子の共振周波数に引き上げられるので(これを変周作用という)、この周波数をフィルタ回路で検出して地上情報を得る方式を指す。国鉄のATS-S形では、車上側では、車上子は、増幅器による帰還回路に組み込まれており、常時発振周波数105kHzを発信している、その出力の一部はフィルター回路(105kHzのみしか通過できない)を経由してリレーを扛上させている。地上側では、地上子は、内部がコイルとコンデンサが直列接続されたLC回路で構成されており、そのコイルに、地上子制御用リレー箱に繋がっているケーブルが接続されており、地上子制御用リレー箱内では、地上子制御リレー(QRリレーと呼ばれている)の接点がケーブルに接続されていて、地上子制御リレーの配線は制御ケーブルを経由して信号機に接続されている。地上子が不動作時(信号機が停止信号以外)には、地上子制御リレーが扛上して短絡され、地上子のLC回路は構成されないが、動作時(信号機が停止信号)には、地上子制御リレーが落下して、地上子のLC回路が構成されると、130kHzの共振周波数が地上子から発信され、そこに車上子が通過すると、車上子の発振周波数が105kHzから130kHzに引き上げられ、それにより車上側ではフィルター回路を通過できず、リレーが落下して警報器を作動させ、表示器の白色ランプが消灯し赤色ランプが点灯して停止情報を伝える。これは1情報1共振周波数方式だったから、これを特に「単変周」と呼んだが、現在では車上からの地上子良否検査を可能にするため、地上子制御用リレー箱内の制御ケーブルにコンデンサを接続して、地上子制御リレーが扛上し短絡されている不動作時の共振周波数103kHzを発信して、さらにこれを強制振り子制御の位置マーカーにしており、電気的に見れば純粋な単変周地上子はなくなった。ATS-Sx、ATS-Ps地上子はそうした有効 - 無効(取消 : 103 kHz)2値型の単変周地上子である。多変周は地上子に複数の共振周波数を割り当てるもので、これに信号現示とその制限速度を割り当てたり、設置位置と併せ限界速度パターン発生に使用する。京王、小田急、東武などの信号ATSがこの多変周方式で、東武ATS (TSP) は周波数の一部をパターン発生地上子に割り当てている(信号ATSとは別に過速度・過走防止ATSがある)。最近の分類では意味の薄れた「多変周 - 単変周」を避け「多情報 - (単情報)」と整理されている。またATSシステムとしては多数の変周周波数を使用しても、単機能地上子として1周波数ということもある。JR西日本が開発したATS車上装置であるATS-SW2形は脱変周式と呼ばれている共振周波数検出方式を採用しており、スペクトラム拡散方式により、車上装置から車上子にATS地上子で使用されている共振周波数帯域の複数の周波数を常に送信しており、車上子と地上子が電磁結合すると、地上子では共振電流が流れ、車上子では地上子から発信される共振周波数の信号スペクトルの受信レベルが上昇して、それをFFT方式によるスペクトル解析で共振周波数帯域の複数の周波数ごとの信号スペクトルの受信レベル変化によるピーク周波数を検知して共振周波数を検出している。トランスポンダ(地上子)とは、鉄道ではデジタル情報送受地上子のことで、送信機能のみのものも含めて呼んでいる。ATS-P形で知られる様になったが、それ以前にも新幹線には多数使われている。元々はトランスミッタ(送信機)とレスポンダ(応答機)で構成される通信機器のことであり、問い合わせに対して応答するもの、もしくは中継器を指していて、多くの情報を高品質と高速度で伝達する機能を有している。トランスポンダ式地上子を使用している、ATS-P形の基本的な地上設備は、符号処理器 (EC) と中継器 (RP) と地上子で構成されており、地上子と車上子との間の送受信に使用される周波数(搬送波)は、有電源地上子又は無電源地上子から車上子に送信する際は1708kHz、車上子から有電源地上子に送信する際は3000kHz、車上子から無電源地上子に送信する際は245kHzを使用しており、変調方式はFSK変調(Frequency Shift Keying : 周波数偏移)を使用している。通信方式は双方向での情報伝達が可能なよう二重通信方式を使用しており、64kbpsの伝送速度で、ハイレベルデータリンクのフレーム構成に準拠した電文構成により、1フレームあたり88又は96ビットのデジタル信号が、繰り返し伝送されている。また、地上装置と車上装置の間では、そのデジタル信号を一旦変換(変調)してから、送受信を行う為、その変換手段としてモデムを使用しており、その変調器 (MOD) と復調器 (DEMO) を使用して、送信の際では、変調器にデジタル信号を入力して変調波を出力させ、受信の際では、復調器に変調波を入力してデジタル信号を復元させることにより、情報を得られるようになっている。列車の速度を計測し、その速度が許容された速度の範囲内であるか否かを照合する。これを速度照査(そくどしょうさ)と言い、速度照査の方法やその制御もいくつかに分類できる。速度照査には、ある地点でだけ照査する「点照査」と、連続して照査し続ける「連続照査」があり、さらに従前一定値だった照査速度を基準位置に対する列車の位置毎にリアルタイムで算出・照合する「パターン照査」がある。連続制御ではない点制御方式であっても速度制限コマンドを記憶して照査を続けることも「連続照査」方式という。地上側に設置された列車検出のループコイルで地上子の地上タイマーを起動して一定時間停止地上子を有効にし、この間に列車が停止地上子に到達すると列車側に警報を鳴動させ、その後に非常停止させる(点照査型)方式。時素式という照査の原理上絶対停止(0 km/h(=時間差∞))を設定できないため、終点の駅などでは過走防止装置として狭い間隔で多数の地上子を配置することに加え、末尾に絶対停止地上子を置いて過走を抑えていることが多い。地上装置に電源が必要なため原則的に分岐器過速防止・警報装置として駅構内にのみ設置されていたが、2005年(平成17年)の曲線速照義務化通達で曲線にも利用されるようになった。他の方式と併用して、低速で使用する例に小田急電鉄があったがD-ATS-P化完了によって使用を停止した。京王電鉄も同様であったがATC化された。また、JRでは分岐器速度制限装置で使用されており、ATS-S形で使用されているループ式とATS-S改良形(ATS-SN形等)で使用されている地上子式があり、前者は、列車検出のループコイルとATS-S形の地上子を設置しており、列車通過時間が設定時間より短い場合は、警報が鳴動して、その後、5秒以内に確認ボタンによる確認扱いをしなければ非常ブレーキが掛かり、後者は、列車検知用地上子と停止用地上子の2つの地上子を10m間隔で設置しており、その間の列車通過時間が設定時間より短い場合には、警報が鳴動すると同時に非常ブレーキが掛かり、列車通過時間が設定時間より少し短い場合には、警報が鳴動して、その後、5秒以内に確認ボタンによる確認扱いをしなければ非常ブレーキが掛かる仕組となっている。京王電鉄の過走防止装置は時素0.5秒の速照地上子対を3 - 4対設置する方式の他に、1秒時素で15地上子を並べて地上タイマー起動コイルと停止コイルを兼用させて次々切り替える方式のものが行き止まり式の終端駅である、新宿駅・渋谷駅・高尾山口駅に設置されていた。ほぼ同等のものが小田急線新宿駅にも設置されていたがD-ATS-P化により使用停止。2基一対の地上子を車上子が通過する時間を計って速度を照査する方式。変周式の場合、地上電源が要らないので地上子を置くだけで動作でき、また地上子間隔を変えることにより、任意の速度を照査できる利点があり、線路終端部での過走防護や曲線と勾配での速度制限にも対応できる。ATS-Sの改良に際しJR東海がATS-STとして独自に開発しJR東海以西のJR各社に採用された。私鉄ATSでは速度照査が義務付けられているのでATS-Sxとは違いこの過走防止装置で高速突入事故は起こらないが、過走に対する絶対停止機能は義務づけがない。その結果、新岐阜駅事故などの低速突入事故が繰り返されている。そのため終端駅などへの進入の際には、車止めへの衝突防止などのために用心深さ(人的用件)が特に要求される。ATSが導入される前は、「車内警報装置」(車警)という自動列車保安装置が使用されていた。この装置は文字通り「警報」を発生させるのみであり、自動的に列車を停止させる機能はなかった。国鉄・JRでは実用として使用されたことはないが、打子式ATSが1927年に東京地下鉄道(現在の東京メトロ銀座線)の開業時に採用された。このシステムはアメリカ・ニューヨーク市地下鉄やドイツ・ベルリンSバーンで同種のシステムが導入されていたのを参考に導入されたもので、実用的なものとしては日本で最初に採用されたATSである。帝都高速度交通営団(現在の東京地下鉄)丸ノ内線・大阪市交通局(大阪市営地下鉄御堂筋線・四ツ橋線・4号線(中央線))・名古屋市交通局(名古屋市営地下鉄)東山線でも採用されていた。線路の脇に設置されたトリップアーム(可動打子)を地上子、台車下部の軸箱付近に設置されたトリップコックを車上子として用いる。重複式が特徴で、2個の信号機が連続して停止現示を示し、その間のアームが立ち上がり、その状態で列車が通過するとアームがトリップコックに当たる。トリップコックはブレーキ管に接続されており、これが開かれて減圧するため非常ブレーキがかかり2個目の停止信号手前で停止する仕組みである。停止信号現示以外に警戒信号現示でもトリップアームが立ち上がる路線もあった。その場合、警戒現示が続いていても、列車が手前のある地点を通過してから一定時間後にトリップアームが下がるように設定されていた。つまり、列車が警戒信号に従って徐行していれば、トリップアームは既に下がっていて、そのまま通過できる。トリップアームが下がる前に進入すれば速度超過と判定されて非常ブレーキがかかる。簡潔な方法ながら確実な速度照査を行なっていた。大阪市営地下鉄では1号線(御堂筋線)の混雑緩和を目的として建設された2号線(谷町線)東梅田-谷町四丁目間開業の際(1967年3月)にATCが導入されて以降、新規開業線区では全てATCが導入されるようになった。さらに既開業線区についても1970年の大阪万博開催に伴う輸送力増強策の一環としてまず1969年12月に中央線で、続いて1970年2月に御堂筋線で打ち子式ATSの使用停止・撤去とATCへの全面切り替えが実施された。最後に残った四つ橋線も1972年11月9日の玉出 - 住之江公園間がATC設置で開業するのに合わせた既開業区間へのATC導入と打ち子式ATS使用停止・撤去され、これをもって大阪市電気局による1号線開業以来の打ち子式ATSが全廃となった。これに対し、営団地下鉄(当時)銀座線・丸ノ内線では1990年代まで、名古屋市営地下鉄東山線では2000年に入ってからも打ち子式ATSの使用が続けられていた。原始的な方式ゆえに列車密度の限界はあるが単純な機構のため信頼性が高く、これら地下鉄での衝突事故は皆無である。しかし、物理的手法の限界から列車の増発による運行の複雑化に対応することができず、銀座線では1993年(平成5年)、丸ノ内線では1998年(平成10年)に使用を終了している。なお、名古屋市営地下鉄東山線が2004年(平成16年)で使用を終了したことにより、日本の鉄道事業法や軌道法に基づく鉄道で、この方式を用いたATSは全てATCに置き換えられ消滅した。日本国有鉄道・JRグループ(一部の私鉄を含む)で採用されたATSには、下記のような種類がある。また、これらの路線を引き継いだ第三セクター鉄道についても、多くの場合は同様のATSを使用している。下述の「私鉄のATS」に比べ膨大なローカル線を抱えた旧国鉄・JRに対する政策的配慮から安全面で劣る状況が認められていた。なお、かつてはA形という形式があったが、これは(車警以来の設備の老朽化により)1970年ごろまでに廃止されてS形に置き換えられている(使用実績が乏しいため、ここでは説明を省略する)。いずれの方式も、ATS設置以前に使われていた車内警報装置に、5秒以内に確認操作をしなければ非常ブレーキがかかる機能を追加したものが元となっている。B形は主に国電区間で用いられた方式で、商用周波数を利用した送電電流を2本の線路の間に流して軌道電流として用いる。B形は制御点に列車が到達したことを接近リレーで検知して、通常は流れ続けている軌道電流を一定時秒停電することにより、「停止信号接近」の情報が地上から車上へ伝達される。S形は国電区間以外の線区で用いられた方式で、線路の線間に設置された「地上子」と、車両に設置された「車上子」の組み合わせによって構成されている。S形は「変周式」であり、車上の発振周波数が(車上子コイルを通じて)地上子の共振周波数に引き上げられることにより、「停止信号接近」の情報が地上から車上へ伝達される。国鉄が試験を行っていたC形の改良型だが機能の面での違いはなく、真空管を使った回路からトランジスタを使った回路に改良されている。S形の場合、地上信号の停止現示に対応するロング地上子(130kHzを発振する)を通過すると運転台において警告音(ベル)が鳴り、そこで運転士が5秒以内にブレーキをかけて(重なり位置にして)、確認ボタンを押すとチャイム(いわゆる「キンコン音」、一部の車両は電子音のタイプもある)に変わる(実際にはチャイム音はベル音とともに鳴り始める。ATS-S型の電源投入時やATCからATS-S型に切り替える時にもベル音とチャイム音が鳴動する)。また、地上タイマー式の速度照査機能も存在する。これは、1つ目の地上子を通過と同時に地上装置のタイマーを起動、一定時間後に2つ目のロング地上子の電源が切れる。このため、一定時間以内に通過(=速度超過している)した場合には運転台の警報が鳴る。(ATS-SNではロング地上子を即時停止地上子に置き換えている)B形の場合は、上記の「ロング地上子を通過」を「軌道電流停電を検知」と読み替えるのみで、あとはS形と同じである。この確認作業をしない場合、列車は自動的に非常ブレーキがかかる。しかし、私鉄に出した運輸省通達では必須とされた速度照査機能がなく、いったん確認作業をしてしまうと、それ以降は停止信号を通過しても非常ブレーキがかからないという欠点がある。実際、ATS確認作業後の運転扱い誤りが原因の重大事故が幾度も発生し、国鉄は何度かの改良を加えたが、根本的な改良はATS-Pまで持ち越すこととなった。2009年(平成21年)現在では、B形の区間は全てATCまたはP形に換装され、S形の区間はP形を追設、あるいは即時停止地上子 (123 kHz) や時素式速度照査地上子対 (108.5 kHz) による非常制動を付加したSx形などに改善された(旧来のS形をそのまま含んでSx形を構成している)。警報機能のみのS形に、全JRが即時停止機能を追加し、さらにJR東海以西の各社とJR貨物で時素式速度照査の機能を追加した方式。即時停止機能は、確認ボタンを押して警報を解除しても、停止現示の絶対信号機直下の地上子を通過(信号冒進)すると即座に非常ブレーキをかける機能である。車上時素式速度照査機能は、二対の地上子対通過時間を車上タイマーと比較して速度照査し、速度超過時には非常ブレーキをかける機能である。ATS-S改良形はJR各社で呼び名が異なり受信機が異なるものもあるが、北海道旅客鉄道(JR北海道)と東日本旅客鉄道(JR東日本)はS、東海旅客鉄道(JR東海)はS、西日本旅客鉄道(JR西日本)はSW (SW2) (車体表記はS)、四国旅客鉄道(JR四国)はSS(SS II)(一部車体表記はS)、九州旅客鉄道(JR九州)はSK (車体表記はSKだが、「S」と「K」を四角でそれぞれ囲んである為、北海道・東日本や東海の様に一緒に記載されて居らず、独立して記載されていたが現在は一緒に記載されている。)、日本貨物鉄道(JR貨物)はSFと呼ばれている。S形には即時停止機能のみが追加されているが、それ以外にはSの即時停止機能に加え車上時素式速度照査機能(2つの地上子の間を0.5秒以内で車上子が通過すると非常ブレーキが作動する)が追加され、さらにS形には列車番号送出機能が追加されている。また、SW形ではS形から列車番号送出機能を省略して車上装置を設計し直したもので、このSW形がほぼそのままSK形、SS形となった。SF形は当初はS型機能だったが後日、車上に時素速照ボードを追加してS形に対応した。またロング地上子と絶対信号機直下の即時停止地上子の変周周波数は130kHzと123kHzで共通で互換性があり、車上子の常時発振周波数はSの105kHzの他は103kHzとしている。これは車上時素式速度照査機能を追加した為の措置で、速度照査区間にS形やS形の列車が乗り入れても、車上速度照査用の地上子の変周周波数にS・SW・SS・SK・SF形は反応するが、SやS形は常時発振周波数帯域の為、反応しない。また、車上時素式速度照査機能は分岐器の速度制限にも対応できるようになっている。車体表記は、JR北海道がSN(SとNがそれぞれ大文字が四角で囲んである)、JR東日本がS、JR東海がS(東海管内はPに切り替わらない場合の絶対停止のみ使用)、JR西日本がS、JR四国がSSまたはS、JR九州がSK(JR北海道と同様の場合と1つに収まっている場合の2種類がある)、JR貨物がSFとなる。JR東日本車のうち、JR東海管内へ直通運転をする運用を持つ車両には、S形と同等の車上時素式速度照査機能を持つATS(Sと表記)を搭載している(東海管内は現在必要としない。)。JR東日本管内に直通運転をしている伊豆急行の車両にはSiの表記があるが、呼び名が異なるだけでS形と同じものである。ただし、伊豆急線内では地上装置として速度照査機構を設置しており、信号の現示速度を守っていればロング地上子による警報ベルは鳴動しないようになっている。それと同様に、かつてJR西日本管内からの直通運転があり、現在でもキヤ141系などJR西日本所属の検査車両などが入線する富山地方鉄道の鉄道線では、JR西日本と同じくSW形を採用している。JR東海との関係が深い愛知環状鉄道線・伊勢鉄道伊勢線・東海交通事業城北線・あおなみ線では、JR東海と同じS形を採用している。また、JR貨物との関係が深い水島臨海鉄道では、ATS-SFとほぼ同形(確認扱い運転がないタイプ)のATS-SMを採用している。JR線からの直通運転を行わない第三セクター鉄道でもS形からSx形に更新する事業者が増えている。なお現状では、改良機能に対応した地上子(即時停止地上子・時素式速度照査地上子)は原則として、絶対信号機(場内・出発信号機)・線路終端部・分岐部・急曲線部のみに設置する拠点設置であり、閉塞信号機には設置されていない。ただし、例外として、JR東海の一部駅・あおなみ線の全駅の場内相当閉塞信号機には、即時停止地上子が設置されている。愛知環状鉄道線ではすべての閉塞信号機にも時素式速度照査地上子が設置され、すべての信号でロング地上子をなくしている。ATS-Pは、確認ボタンを押すと後は制御が働かなくなるATS-S形の欠点を改善するために開発されたATSである。地上装置・地上子から列車へのデジタル転送を用いた停止信号・速度制限の位置、勾配、距離などの情報に基づき、自車の制動性能と走行距離から刻々の上限速度すなわちパターン(その列車が制動開始から停止・減速するまでの速度変化を表す曲線)を作成し、その上限速度値を用いて速度照査を行う。発生するパターンの最高速度は、車種ごとの最高運転速度+10km/hに設定されており、停止パターンが発生していない状態でも常時有効となる車両最高速度照査も行われている。地上装置はJR東日本・相模鉄道(相鉄)ではI形、JR西日本では1形とも呼ばれているが、後者は列車から次の駅の停車かまたは通過かの「通停判別」とATS-P形を搭載しているとの情報を、地上装置が受信して種別による踏切の定時間制御と信号機の現示アップを行う、地上と車上の双方向に情報を伝達するトランスポンダ式に変更されている。以下、本記事内では便宜上、I形を「JR東日本・相鉄方式」、1形を「JR西日本方式」と記述する。停止信号を基準位置として車上で刻々算出した制限速度値(パターン)と比較して、そこまでに徐々に減速できるため冒進は起こらず、安全のための余裕距離もほとんど不要な優れた方式である。停止信号に対する制限と、4種の速度制限を設定でき、それらのうちの最低値で速度照査を行う。ATS-S・ATS-B形とは異なり、警報ベル音がなったあとに行なう確認扱い動作は必要としない。速度照査はATS-S改良型のような点照査ではなく、安全のための無駄がほとんど要らず、列車の制動性能が正常ならば停止信号冒進は発生しないため、車間を詰めることのできる、非常に安全性の高い方式である。地上のシステムは、符号処理器(EC)・中継器(RP)・ATS-P形有電源地上子で構成されており、符号処理器は信号機と繋がっており、符号処理器と中継器は電源・情報回路の2つを持つ複合ケーブル、中継器と地上子は接続ケーブルがそれぞれ繋がっている。符号処理器が信号機からの現示条件により、内蔵している電文ROMから制御電文を抽出した後にケーブルにより送られ、中継器がケーブルから送られる制御電文を自分が受け持つ地上子の制御電文と合致する制御電文を蓄積した後に地上子を介して制御電文が車上に送られる。制御方式としては、信号機から600m手前(外方とも呼ばれる)にパターン発生地上子を設置しており、信号機が停止現示の場合に、列車が手前の信号機による注意現示による速度で、その地上子に接近すると、その信号機までの距離などの情報を地上子から送信して、それを車上子が受信して車上に送られ、車上ではそれを元に信号機までのパターンを作成・記憶する。その後、列車がそのパターンの許容速度以下で列車を減速させ停止させれば良いが、列車の速度がパターンの許容速度に接近すると警報器が作動し、警報音鳴動とともに運転台のATS-P車上表示器にて「パターン接近警告」を表示する。さらに列車の速度がパターン速度を超えると、直通ブレーキ系車両では常用最大ブレーキにて列車を停止させ(常用制動は緩解時間が短いので、動作しても遅延が発生しにくい、また車両によっては非常ブレーキをかけると一旦停車するまで緩解できないことがある)、自動ブレーキ車両では非常ブレーキにて停止させる。その後に復帰扱いするとブレーキが緩解する。その他にも信号機がR現示からY現示又はG現示となる現示アップの場合には、その情報を車上に送信してパターンの更新を行う更新用地上子を信号機とパターン発生地上子の間に設置しており、閉塞・出発信号機には3個設置し場内信号機には6個設置されている。またカーブや分岐器での速度制限の場合には、信号機がR現示の場合と同じく、パターン発生地上子からの情報により、速度制限があるカーブや分岐器までとそれに続く速度制限区間のパターンを車上で作成・記憶して、列車をそのパターンに沿って減速させて速度制限区間での速度照査を実施する。ATS-Pが優れている理由は、上述の通り車上演算パターン型照査方式の採用により冒進がなく、各列車のブレーキ性能による最適な照査パターンの作成が可能となることにより、安全かつ高密度運転が実現でき輸送容量を増やすことができる。これはトランスポンダ使用のデジタル方式採用によるものではない。変周型ATS-Sx上位互換でパターン照査を導入したATS-Psはデジタル方式ではないが、同じ点で優れている。反面、降雪時など想定制動性能を保証できない環境下では、安全のための余裕距離がない分、適切な位置までに停止・減速できない恐れがある。現にJR西日本では特急「はるか」において、琵琶湖線で降雪下に280mの冒進事故が発生したことがあった。地上子から情報を受信した列車は、停止現示の信号機やカーブなどの速度制限までの距離に応じてパターンを作成・記憶するが、下り勾配でR現示の信号機がある場合は、地上子から「信号パターン補正」情報を送信してパターンを補正する。信号関係の「保安コード(電文)」はJR各社と相鉄との共通で協議決定すると定められているため、JR各社間・相鉄およびJR東日本・相鉄方式を採用している東京臨海高速鉄道・北越急行とJR西日本方式を採用している智頭急行との相互間で互換性があるが、JR東日本・相鉄とJR西日本で異なるコードとなっているのは「列番情報(JR東日本・相鉄)」「列車選別情報(JR西日本)」「速度制限を許容不足カント量(110mm=振り子式、70mm=高速、60mm=普通、50mm=機関車列車)毎に加算するコード領域(JR西日本)」「架線電圧切替、交直切替(JR東日本のみ)」「新幹線・在来線切替(新幹線直通電車のみ)」「高速許可(かつての北越急行)」である。「速度制限を許容不足カント量ごとに加算するコード領域」については一部の曲線に導入されていたが、1990年(平成2年)ごろの導入以来2005年(平成17年)まで、設定値の約2/3に誤設定があり、多くは間違って共通(=JR東日本・相鉄)方式で設定していたことが尼崎事故調査委員会の指摘により判明した。共通方式設定であれば、制限速度がJR東日本・相鉄と同様に最低車種になるだけとなるため、危険はなかったが、設定作業部局がJR西日本方式として機能拡張されていたことを知らなかった。発表時には誤設定の多数が「共通方式設定」だったとは解明されず、適用ミスで35km/h超過といったミスもあって、全国の鉄道事業者に設定値の点検を求めるなど問題になった。なお、このコード領域については、2005年(平成17年)のJR福知山線脱線事故を受けての曲線速度照査義務化に伴い、JR東日本にも採用され、その後ATS-Pの使用を開始した相鉄でも、JR東日本との仕様の共通化の観点からこれを採用している。以上の位置基準型の車上演算型速度照査方式、いわゆるパターン型速度照査が(停止信号)冒進のない安全なATSとしてJR東日本を中心にATS-Pとして普及し、安全度を落とさずに列車間隔を詰め線路容量を増やすことに成功した。その照査方式が自動列車制御装置 (ATC) にも取り入れられDS-ATC/D-ATC/KS-ATC≒ATC-NSなどで採用されて線路容量を増やした。総武快速線 - 横須賀線の東京トンネルや埼京線池袋駅 - 新宿駅間など、在来線のATC区間をATS-Pに換装した例も現れている。また相鉄でも2014年3月30日より全路線でATS-Pを採用した。これは相鉄が2019年度にJR東日本と相互乗り入れを計画しているためである。しかし、ATS-Pはこうした非常に精密で高価な機器であることから、他のATSとの互換性は無く、独立したATSとして扱わなければならない。ATS-Pを安全かつ正確に作動させるために、専用の電源装置が必要になるほか、車上子も独立して設置しなければならない。この例として、JR東日本が保有する電気機関車EF65 501は、ATS-P設置の際に機器室に同電源装置を設置するスペースが確保できなかったため、運転室の助手席を撤去して設置する工事が行われている。蒸気機関車としては、同じくJR東日本が保有する「C58 239」・「C61 20」・「D51 498」の3台にもATS-Pが追設されているが、車上子は先台車上部に設置したため、万一の事故に備えての防護も兼ねて、スノープラウでカモフラージュを行い、装置の存在が目立たないように配慮されている。なお、電源装置はテンダー(炭水車)に設置しているが、設置場所はそれぞれ異なっている。一方、ディーゼル機関車は一部の車両がそれらの防護策を施さず、車上子が見える状態になっている。いずれの車両も、車上子は判別化のため、緑色に塗られている。JRにおける車体表記はP。また、JR東日本に乗り入れている東京メトロ05系や07系および15000系、東京臨海高速鉄道70-000形などにおいても同様の車体表記がある。なお、相鉄ではATS-P搭載車両の車体表記を特に行っていない。1973年(昭和48年)12月26日に関西本線平野駅において、分岐器の通過制限速度を超えて進入した列車が脱線する事故が発生した。これを受けて速度照査機能付きのATSの開発が行われ、1980年(昭和55年)から多変周点制御式のATS-Pが関西本線で試用を開始された。この際に113系の一部編成に変周式ATS-Pを取り付けた。その後、1984年(昭和59年)10月19日に山陽本線西明石駅において、寝台特急が制限速度を超過して分岐器に進入してホームに衝突して大破する西明石駅列車脱線事故が発生した。これを受けて位置基準車上演算方式(=いわゆる「パターン式」デジタル符号伝送のできるトランスポンダ式)で冒進・過速度の起こらないATSがH-ATSという名前で開発された。1986年(昭和61年)末に西明石駅・大阪駅・京都駅・草津駅の4駅に地上設備が設置され、寝台特急牽引用のEF66形電気機関車16両に車上設備が搭載されて、ATS-Sと併用する形で運用が始まった。このH-ATSはATS-P'とも呼ばれていた。初めて全線すべての信号機に設置されたのは、1988年(昭和63年)末に新規開業した京葉線で、これ以降H-ATSを正式にATS-Pと定め、関西線の変周式ATS-Pの運用は打ち切った。地上装置は1型ATS-Pとされた。情報伝達は従来方式のように地上→車上の一方向ではなく、地上←→車上の双方向に伝達するトランスポンダ式で開発されたものである。地上装置ではそれを利用して、列車からの列車番号や列車選別等の情報を、車上から地上の地上子と中継器を介して符号処理器に伝達され、その情報が他の各符号処理器の間で伝送されることにより、関係する信号機の現示を上げることができる現示アップ機能が可能となり、運転間隔をさらに短縮することができるようになり(H-ATS、1型、PN型地上装置ではこのような現示アップ機能は不使用)、種別による踏切の定時間制御を可能としている。JR東日本ではII形と呼んでおり、その後は、光伝送部を符号処理器に後付けして列車の在線情報などを駅にある駅処理装置に光ファイバーで伝送できるようにしたIII形、III形の光伝送部を符号処理器に内蔵したIV形、中継器を小型化してクロージャと呼ばれる接続容器に収容したIV形、中継器をさらに小型化して地上子に内蔵することで中継器の設置場所の制約を無くしたIV (N)形、符号処理器と光伝送部を二重化して信頼性の向上を図り、制御電文のデータ変更を内蔵された電文ROMの交換する方式から、PCカードのケース内に二重系分の電文データを記録したROMカードを使用して、PCカード書き込み装置によりデータの変更を行う方式に変更したIV (W)形、関連機器を機器室に集約して現場機器の削減を行い、符号処理器と光伝送部の間の伝送を二重系とし、地上子の送信停止機能を追加して、保全性・信頼性・施行性を向上させた機器室集約形、IV形・IV (N) 形と互換性があり、符号処理器のブロック構成によるブロック化や二重系化などを行ったV形がある。JR西日本では、符号処理器に閉塞信号機で使用される現場用と駅構内の信号機器室(SH)で使用されるVEタイプのSH用の2つがあり、SH用には内部に8つの符号処理部と統括部があり、他の符号処理器とは統括部を介して伝送される。前述の1形のほか、中継器を一方方向伝送機能と双方向伝送機能の2つに分けて、前者は中継器を小型化して地上子内蔵形として信号機から遠方に設置し、後者は信号機に最も近い地上子に接続された2形、2形にME(マイクロエレクトロニクス)技術の進歩による装置の小型化と中継器で使用される電源が交流または直流でも符号処理器の電源ブロックを取替えることで使用可能とし、制御電文のデータ変更を内蔵された電文ROMの交換する方式から、CFカードから符号処理器のメモリに直接ロードする方式に変更した3形がある。285系「サンライズエクスプレス」はJR東日本・JR東海・JR西日本・JR四国の区間にまたがって運転されているが、車上子の設置位置がJR東海車は運転室直下であるのに対して、JR西日本車は中央だったため、入線試験時に停止定位の出発信号でパターンに当たることがあった。営業運転に際しては車上子を運転室直下に移設して本州3社のATS-P区間でトラブルが起こらないように対策した。営業運転に伴い以下のように運転することとなった。取り扱いに関しては下り列車はJR東海の乗り継ぎ乗務員が、上り列車についてはJR東日本の乗り継ぎ乗務員がATS切替スイッチにて手動で切り替えていた。これは拠点P(=Sw扱い)の福知山線と全面Pの東西線直通列車が尼崎駅で行うP/S切替操作と同じである。後述しているが、JR東海が2010年度よりATS-PTを導入したため、熱海駅でのATS切り替えは行われなくなった。また団体輸送などでも同様の事象があるため米原駅以西を直通運転する列車についてはサンライズ同様の取り扱いをすることとなっている。ATS-PT導入以前、JR東日本とJR東海を跨ぐその他の定期列車については丹那トンネルの東京寄りにATSの切り替え地上子があり、そこで自動的に切り替わるようになっており、下り列車の場合はS型のチャイムが鳴動し、運転士が手動にてチャイムを止める(ATS-PT搭載車は電子チャイムのみ、S型チャイムは鳴動しない)。逆に上り列車の場合はP型のチン・ベル(ATS-PT搭載車は電子チャイム)が鳴動するが特段することはなくそのまま走行する(ATS-P/Sx自動切替は伊豆急行線伊東駅構内などで常時見られる。)JR東日本では「拠点P」方式を導入していないため、P/S手動切替は無用だが、切替を間違えてもそれぞれが動作し危険な状態にはならない。上記以外にも、ATS-Pを2重化(故障対策)やPs(SN機能付き)統合型も開発されている。S形などの変周式とは互換性がないため、P形が搭載されていない列車が入線する可能性がある線区では、ATS-S改良形 (=Sx) を併用している。関西空港線(りんくうタウン駅 - 関西空港駅間)は南海電気鉄道との共用区間であるため、南海のATS-PNを併用している。比較的列車密度の低い線区に導入されているATS-P形の地上装置であり、車上→地上への情報伝達機能を省略したものである。信号機からの現示条件により無電源地上子が電文切替リレーの切替により、内蔵した電文ROMからそれに対応した制御電文を選択して車上に送信するとしたもので、それを送信するための電源は車上側の車上子から送られる。当初無電源地上子は最大3現示対応だったが、これを最大5現示対応と特殊条件(単線区間での方向)まで拡張しており「電文」=コードを複数持たせている。Sx地上子と同様に現示条件だけで制御できるので非常に安価に設置でき、2001年初頭から2010年にかけて、首都圏周辺部の現示アップ機能の必要ない線区約600kmに導入されている。省略されて存在しない機器は、符号処理器 ・光電送部・中継器であり、存在しない機能は、車上列番受信・現示アップ・踏切定時間機能である。車上装置はすべて共通である。JR東海がATS-STの取り替えにより、2010年度から順次導入している方式。2012年2月に全ての在来線において更新が完了した。基本的構造はJR他社で導入されているATS-Pと同様であるが、常用ブレーキは使用しない。すなわち、他社のATS-Pの車上装置(自動空気ブレーキ方式の車両を除く)では常用ブレーキと非常ブレーキに基づくパターンをそれぞれ生成し、前者を超過した場合には常用最大ブレーキが作動して停止するのに対し、ATS-PTの車上装置では非常ブレーキに基づく照査パターンのみを生成し、それを超過した場合には非常ブレーキが作動し停止する。これは自動空気ブレーキ方式である従前の機関車、ディーゼルカー用ATS-Pと同機能である。ATSの目的はあくまで安全確保と考え、運転支援のための機能を省略してコスト削減を実現したものと言える。また停止後に復帰扱いすれば緩解して運転を続行できるのはATS-Pと同じである。ATS-STの地上設備はPTが動作できない場合(実際は数個のP地上子を通過して切り替える)に備えてST絶対停止を残して撤去された。なおJR西日本管内(新宮駅、米原駅、猪谷駅構内を含む「ATS-SW」、「P・S併用」)と篠ノ井線のスイッチバック構造で後退運転する姨捨駅・桑ノ原信号場(構内のみATS-S)、中央本線辰野支線内・辰野駅構内・大糸線の一部区間 (ATS-Ps)、関西本線亀山駅・伊勢鉄道・愛知環状鉄道(ATS-STのまま)、駅構内の一部の貨物発着線、貨物線内 (ATS-SF) などで車両側にATS-STが必要である。運転席を立ち上げる時はATS-STで起動され、ATS-Pの地上子を通過してATS-PTに切り替わる点は、他社のATS-Pと同様である。地上子は閉塞や単純の駅は最大5電文式の無電源地上子(東日本のATS-PNと同じ)、曲線等の速度制限は電文固定式の無電源地上子、駅構内などの複雑な箇所はエンコーダ式(フルP・有電源)地上子を設置する。車両表記は、東海ではP。()内は引退またはJR東海エリアからの定期運用撤退車両、「」内は導入予定車両このほか、西濃鉄道DD40形およびDE10形、樽見鉄道ハイモ230形およびハイモ295形、名古屋臨海鉄道ND60形およびND552形が、駅構内においてJR東海の管理する線路に乗り入れているが、これらの扱いに関しては不明である。ATS-Pの車上装置は、車上で設定する運転方向スイッチの方向とATS-P地上子から発信される制御情報の中の運転方向ビット(情報)を受信して、車上で両者の運転方向条件が一致した場合のみ、その制御情報を採用する方式を取っている。運転方向設定の方式としては2種類あり、車上に運転方向条件を切替える運転方向スイッチを設置してA線とB線の切替を行ない、地上側のATS-P地上子にはA線用とB線用を設置して、A線用にはA線用の運転方向ビット(情報)が発信され、B線用にはB線用の運転方向ビット(情報)が発信される方式と車上の運転方向条件をA線又はB線に固定して、A線の方向に進路が開通した時には、地上側はA線用地上子からAB線用の運転方向ビット(情報)を発信して、B線用地上子からは無制御の運転方向ビット(情報)を発信し、逆にB線の方向に進路が開通した時には、地上側はB線用地上子からAB線用の運転方向ビット(情報)を発信して、A線用地上子からは無制御の運転方向ビット(情報)を発信する方式がある。下にJR東海での各路線のA線・B線の運転方向を示す。JR東海管内とあおなみ線のみ記載()内は他社の行先を表すJR貨物の機関車にはATS-PF形車上装置が搭載されているものがあり、PFと表記されている。ATS-P形のコードが貨物列車の速度制限に対応しておらず、また、貨物列車用の車両には、ブレーキは強める一方のブレーキ操作しかできないものが多くあり、旅客列車とは減速特性が異なるため、車上装置が共用できない。そのため、貨物列車用のATS-P車上装置として開発されたものである。貨物列車はけん引する貨物の種類によって最高速度が定められているため、車上装置側の「列車設定スイッチ」により最高頭打ち照査速度を設定する。最高頭打ち照査速度は45・55・65・75・85・95・100・110km/hのほか、入換時の最高速度である25km/hから選択する。パターン超過時のブレーキ指令は非常ブレーキのみである。運転台には、バーグラフ表示により現在の列車の速度と発生しているパターンの照査速度を表示する運転台表示器、電源投入時の操作・パターン発生や消去・パターン接近・復帰扱いでのブレーキ開放の時にチャイム又は女性の声でアナウンスを流す為の大型スピーカーが設置され、機関車が重連運転の補機又は後押し補機での場合にはATSの機能を停止させる機能も搭載する。また、ATS-Pを連続整備しているJR東日本およびJR東海管内と拠点P方式を採用しているJR西日本管内では運転取扱や仕様に一部相違があることを考慮し、「東モード」と「西モード」を備え、会社間切換地上子による自動切換機能を有する。なお、EF210形(セノハチ補機も含む)・EH200形・EF510形・EH500形・EH800形(量産形)は新製時からPFを搭載している。車両表記はPF。JR貨物は、ATS-PF・Ps統合型車上装置が開発されている。ATS-P地上装置を、絶対信号機付近や、一部の踏切、分岐器の箇所に拠点設置する方法。JR西日本と東日本で採用されている。絶対信号機(場内・出発信号機)や、ホームに近い踏切(停車列車が行き過ぎる恐れがある時の踏切防護)、分岐器付近にATS-P地上子を設置し、基本的には閉塞信号機には設置しない。この方式を採用した区間では、全ての信号に対してATS-SW地上子が設置してあるため、ATS-Sx (Ps・DW) のみを搭載した列車も拠点P区間へ入線可能(ATS-SWが機能)である。また、ATS-P (PT・PF) を設置した列車も、ATS-SxとATS-Pを同時に作動させて運転する(扱いは「ATS-S」となるが、ATS-PのP電源を投入状態にすることで同時作動状態にさせている)。この方式を採用した区間では、ATS-P地上子の設置されていない閉塞信号機はATS-SWと同等の動作となるが、列車間隔の詰まる駅周辺では、ATS-P自体の位置基準速度照査方式(パターン方式)と現示アップ動作により列車間隔を詰められるので線区全体としての線路容量を増やすことができる。閉塞信号機の区間内での曲線に対する速度照査はATS-SWの車上時素速照機能で可能だが、閉塞区間が短い路線ではATS-P速度照査地上子も設置されている。なお、ATS-P2(P3・P4)はJR西日本の設計した車上装置の形式であり、拠点Pを示すものではない。2015年よりJR東日本では上越線の水上駅以北の一部の駅に駅構内及び第1閉塞の直前のみ設置する拠点P運用を開始している。JR西日本とは異なり、P/S併用ではなくP/S自動切替で対応している。JR東日本の計画では新潟駅から青森駅までの日本海縦貫線でPsを設置していない駅に今後拠点設置する予定。名古屋鉄道常滑線・空港線のATS-Pは ミュースカイ用2000系専用で一部の曲線(制限速度が異なる<高くなっている>)と中部国際空港駅に拠点P方式で設置されている(一般車と一般区間はM式ATSを使用)。SN形・Sx形(ST・SW・SF形など)に新たな地上子の変周周波数を追加してその設置位置規則を車上に記憶させておくことで速度照査パターンを生成させる機能を追加し、P形に近い機能を持たせたものでSx型の上位互換であり相互乗り入れ可能である。構造・機能で分類すれば車上演算照査機能(パターン照査)が加わったSx型である。従って、停止信号の他、カーブや分岐器や勾配などの速度制限情報やパターンによる速度照査を行うことが可能であるが、列車の速度がパターン速度を超過(=ブレーキ動作)すると、非常制動をかけて列車を停止させる。停車後は手動でブレーキを開放させるようになっている。また、Sx形の速度照査機能もそのまま使用できる。地上子は3個あり、信号機がR現示の場合は、信号機から655m手前の第1パターン発生地上子で65km/h(機関車では55km/h)までの速度照査パターンを生成させた後、次の390m手前の2個で一対の地上子による第2パターン発生地上子で15km/hまでの速度照査パターンを車上側に生成させる「Paパターン」と閉塞区間が短い所で、場内信号機と出発信号機の間の距離が短く、出発信号機に従属するPs形の地上子が場内信号機の外方に設置されている場合、場内信号機に従属する手前の各3個の地上子の2m手前に、マーカ地上子とよばれる識別用地上子を設置して、出発信号機が停止現示の時に、これらの地上子により前者と同じパターンを車上側に生成させる「Pbパターン」の2種類がある。両者とも、最後に15km/hパターン速度以下で信号機に接近する際には、信号機の手前20mの直下地上子によって非常ブレーキが作動する。また信号機がR現示で車上側で速度照査パターンを生成させた後に信号機がG現示となった場合(現示アップと呼ばれる)、3個の地上子の変周周波数は103kHzになり、その変周周波数を車上側が受信すると速度照査パターンは消去される。速度制限の場合は、カーブ・分岐器・勾配・臨時の4種類の速度照査パターンを発生させ、カーブ・勾配・臨時の速度制限と分岐器速度制限の場合、前者は速度制限区間の始点から555m手前に2個のマーカ地上子を制限速度に応じて地上子間隔を変えて設置し、速度制限区間の終点に同じく2mの間隔で設置する。車上側には速度制限区間までの速度照査パターンを発生させた後に速度制限区間の終点でパターンを消去する。後者は分岐器の速度制限区間の始点から555m手前に2個のマーカ地上子を制限速度に応じて地上子間隔を変えて設置し、分岐器までの速度照査パターンを発生させた後に分岐器速度制限区間の最大長である50mの距離を通過後、自動的にパターンを消去する。マーカ地上子は、エンコーダ方式のATS-Pと同じく、下り勾配で信号機が停止現示である場合、車上側に速度照査パターンの補正を行うことも兼ねており、これはY現示速度以下しか対応しないATS-ST・Sx系過走防止装置とは際だった違いになっている。さらにPs形は入換信号機の地上子にも使用されており、入換信号機の停車位置に直下地上子とその手前20 - 40m以内に変周周波数の異なる2個のマーカ地上子が3m以内の間隔で設置されており、停止現示で接近した際には、車上側に30km/hの頭打ちパターンが発生して、その後、直下地上子で非常ブレーキが動作して入換信号機を冒進できないようになっている。Ps形はS形・Sx形と同じく変周式のため、Ps形の各パターン生成と速度制限情報は、地上子の変周周波数・設置間隔の組み合わせにより行う。Ps形はS形・ST形等と上位互換性が確保されているため、S形・ST形等を搭載した車両はPs設置区間へ入線可能であり、Ps形を搭載した車両はS・ST形等設置区間に入線可能となっている。運転席に設置の動作モニタはP形のものとは異なり、現在の速度とパターン速度が表示できるよう改良されている(これらの速度は、2色のカラーバーLEDにより表示。P型でもモニタが信号を得てATS-Pコマンドを表示するものがある)S形・ST形等を搭載した車両は、信号機がR現示の場合、その手前に設置された専用のロング地上子によりS形と同じく警報を受け、警報確認後に信号機に接近すると、同じ信号機の手前20mの直下地上子に反応し非常ブレーキがかかる。さらにST形等を搭載した車両は、信号機390m手前の第2パターン発生地上子を時素式速度照査地上子として使用することにより50km/hの速度照査を列車にかけることができる、またY現示速度超過時には非常制動がかかる。以上のことから、Ps形はS形・Sx形との互換性があり、P形のように特別な電源装置および車上子の設置も必要が無いことから、安価で容易に導入できる新しいATSとして確立された。車両表記はPs。仙台地区で設置が始まり、盛岡・秋田・新潟・長野地区においても導入が進んでいる。運用されている区間は以下の通り。なお、仙台・新潟地区において、設置当初は絶対信号機(場内・出発信号機)に対してのみPs形地上子が設置されており、閉塞信号機に対しては設置されていない。曲線に対する速度照査は、仙山線において先行して速度照査が行われていたが、他の路線においても速度照査が行われている。今後の予定として、東北・信越地区の主要駅(23駅)への導入が発表されているが、一定距離の区間へ連続的に設置するのではなく、中心駅の出入口へのピンポイント的な設置にとどまる。当該地区における車両はもちろんのこと、この他にも関東の一部の車両(ジョイフルトレインなど)にもPs形が設置されている。また、JR西日本京都総合運転所所属の583系についても、夜行急行列車きたぐににて信越本線宮内駅 - 新潟駅間に乗り入れるため、2010年にPs形が取り付けられた(なお、同車は2012年3月のダイヤ改正をもって定期運用終了。同年度の冬の臨時運転をもって乗り入れが終了している)。2006年(平成18年)12月より、JR東日本高崎車両センターに在籍し、P形を装備している蒸気機関車D51 498にも追加装備がなされた。さらに2007年(平成19年)4月に大宮総合車両センターを全検出場した蒸気機関車C57 180も、新潟県内在籍のため追加装備がされた。2011年(平成23年)3月に復活した蒸気機関車C61 20もPs形を取り付けたが、復元工事段階より設置された蒸気機関車としては初めてである。続けて2014年(平成26年)1月に復活した「C58 239」にも、岩手県内での運行になるため復元段階より設置されている。なお、Ps形を取り付けたこれらの蒸気機関車には、炭水車の前側台車に速度検知を追設し、2011年春以降に検査に合わせて順次、伝統ある機械式速度計から国鉄型電気機関車の速度計を模した電気式速度計に変更されている。またEF510形500番台(JR東日本・JR貨物転属車問わず)やJR貨物仙台総合鉄道部所属のEH500形やDE10形、高崎機関区所属のEH200形の一部にも搭載されているのが確認されている。青函トンネル用のEH800形も在来線区間(津軽線・江差線→道南いさりび鉄道。「20kV区間」)で必要になるので搭載している。JR貨物は、北日本運用向けのPF・Ps一体型の車上装置が開発されている 。ATS-Sxとの機能交換性を確保しつつ、車上にて速度照査パターンを発生させる新しい車上速度照査式ATS-Xを鉄道総研が開発を行ってきたが、このATS-Xを基本に線路条件に応じた速度制限機能に対応し、低コスト化と地上装置の省略を実現するため、車上データベース(車上DB)を導入したのがATS-Dxである。ATS-Sxと互換性があり車上速度照査機能を付加したものだが、線路条件に応じた速度照査パターンや速度制限機能を発生させるのに車上DBを使用している。ATS-Dxは車上装置にATS-Sxの車上子を使用し、地上装置は従来のATS-Sxと同様の変周周波数のほか、デジタル信号を同時送信できるD形地上子を使用しており、種類としては、S形地上子の機能に加えて信号機までの距離等をデジタル情報として送信する有電源地上子、固定のデジタル情報を送信できる電源ケーブルレス地上子、現示追随性に応じて設置される速度照査パターン消去用(中間・直下)地上子、補足機能や付加機能を使用する為に必要な個所に設置される制御用地上子の4種類がある。以上の仕様から、ATS-Dxのシステムは地上系および車上系においてATS-Sxの動作を継承しつつ機器や機能を付加更新するものであり、ATS-Sxシステムを全面的に置き換えたり、独立したシステムが併存しており走行中

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。