宇宙ステーション補給機(うちゅうステーションほきゅうき、、略称: HTV)は、宇宙開発事業団(NASDA)と後継法人の宇宙航空研究開発機構 (JAXA) が開発し三菱重工業や三菱電機、IHIエアロスペースなどの大小100社程度の企業が製造する、国際宇宙ステーション (ISS) で使う各種実験装置や宇宙飛行士の食糧や衣類の輸送業務を担う無人宇宙補給機である。愛称はこうのとり (KOUNOTORI) 。H-IIBロケットに搭載されて打ち上げられ、高度約400キロメートル上空の軌道上を周回する国際宇宙ステーション (ISS) へ食糧や衣類、各種実験装置などの最大6トンの補給物資を送り届ける。その後、使わなくなった実験機器や使用後の衣類などを積み込み、大気圏に再突入させて断熱圧縮によって焼却する。ISSにはハーモニー付近に設置されたロボットアームで掴んでハーモニーの下部の共通結合機構 (CBM) に結合させる方法が採られる。1988年、日本、カナダ、アメリカ合衆国、および欧州宇宙機関 (ESA) 加盟国の政府間で宇宙基地協力協定 (IGA) が署名された。1993年にロシアも加わり、1994年に現在の国際宇宙ステーション計画が誕生した。こうした中で、1994年7月の宇宙ステーション計画の了解覚書協議において、アメリカ航空宇宙局 (NASA) は宇宙ステーションへの輸送を、国際パートナーがスペースシャトルでの輸送経費を実費負担する方式から、各パートナーごとが輸送能力を提供することを原則とする方式への変更を提案した。これを受け、日本の宇宙開発事業団(NASDA)は1995年に宇宙ステーション補給機の概念設計を開始し、1997年にHTV開発に着手した。1998年2月24日に署名された宇宙基地了解覚書 (MOU) においては、日本が国際宇宙ステーションへの補給義務を負うことが国際約束された。その後、2003年のコロンビア号空中分解事故によってスペースシャトルの退役への流れが加速したことにより、HTVを含めた無人宇宙補給機の重要性が高まっていった。当初、人工衛星基準の設計製作経験しかない日本がHTVをISSへ全自動ランデブーさせる構想を提案したことに対し、NASA側は難色を示し拒絶したという。ちなみに、当初HTVはH-IIAロケットに液体ロケットブースター (LRB) 1基を追加した212型で打ち上げる前提で開発が進められていた。しかし再検討の結果、LRBを追加するより、1段目を大型化する方が経済性、確実性、輸送能力などの点でより優れていると判断され、H-IIBロケットの開発が決定した。なお、日本ではHTVの前に再使用型宇宙往還機であるHOPE(ホープ、H-II Orbiting Plane)の開発が進められていた。HOPEはISSの輸送用途にも考えられていたが、再利用型より使い捨て型のHTVのほうが輸送コストのパフォーマンスが優れているということで、結局HOPEが採用されることはなかった。なお後にHOPE開発自体凍結されている。技術実証機の建造費約200億円を含んだ総開発費は677億円、2号機以降の1機あたり建造費は約140億円である。1機目のHTV技術実証機には、「おおすみ」や「はやぶさ」のような他の国産宇宙機に付けられる愛称がつけられなかった。この理由は使い捨てという用途のためであったが、より親しみを持ってもらうために2010年8月27日から9月30日までの期間に愛称が一般公募され、同年11月11日に「こうのとり」という愛称が発表された。(愛称決定後は技術実証機をこうのとり1号機と呼ぶこともある。)選定理由は赤ん坊や幸せといった大切なものを運ぶコウノトリのイメージが、HTVのミッション内容を的確に表しているから、というものであった。なお、有効応募総数は17,026件、「こうのとり」の提案者数は217名で、提案者には特典として認定書・記念品が届けられ、抽選で選ばれた6組が、2号機から7号機まで毎回1組ずつ、名付け親の代表として種子島宇宙センターでの打上げを見守る。HTVは当初から補給キャリアの組み替えにより様々な輸送需要に対応したり、将来は有人宇宙船や軌道間輸送機に発展させることを容易にするため、モジュール設計が行われている。まずは与圧物資と非与圧物資を搭載する「混載型」のみ開発したため、組み替え形態の開発は将来構想となったが、モジュール単位で開発して後で組み合わせることが可能になり、開発の効率化にも役立った。大きく分けると、前側2/3程度が補給キャリア、後側1/3程度が電気・推進モジュールである。国際宇宙ステーション (ISS) に補給する物資を搭載する区画。与圧部と非与圧部からなる。ISSに補給品を送り届けた後、不要品を搭載して大気圏に突入し、焼却処分する役割も持つ。なお、開発初期段階では非与圧部がなく与圧部を大きくした構成も発表されていた。最近の構想図でも、与圧部のみの構成や非与圧部のみの構成が掲載されているが、将来このような様々な構成を使用する予定があるのかは未公表である。以下、混載型の補給キャリアについて解説する。国際宇宙ステーション (ISS) の船内用補給品を搭載する区画。国際標準実験ラック (ISPR) またはHTV補給ラック (HRR) を合計8個搭載することができる。HRRは飲料水、食料、衣類等を輸送する際に用いるラックで、物資は物資輸送用バッグ(Cargo Transfer Bag:CTB)と呼ばれるISS標準のバッグでHRRに収められる。また5号機からは与圧部の底面のスペースを利用した新たな補給ラック(HRR Type-D)が搭載可能となっている。搭載可能なCTBの数は、初号機では208個(標準サイズ換算)だったが、5号機では242個に増加した。補給品はISS乗員が乗り込んで搬出するため、内部はISSと同じ1気圧の環境に保たれるほか、単独飛行中も気温は一定に制御される。ISSを離れる際には、ISSの不要品(使用済みラック等の廃棄物)を積み込み、HTVごと大気圏に突入して廃棄される。補給キャリア与圧部は、HTVとISSの結合部でもある。先端部分には共通結合機構 (CBM) を装備しており、ISSのモジュールに結合することができる。通常、HTVはハーモニー(ノード2)の地球側結合部に接続される。国際宇宙ステーション(ISS)の船外の宇宙空間に設置される曝露実験装置や予備部品を搭載する区画。過去の宇宙機では実績のない2.7m × 2.5mという大開口部を有しており、その中に曝露パレットを収納することができる。曝露パレット(Exposed Pallet: EP)は、「きぼう」船外実験プラットフォーム係留専用型と、多目的曝露パレット型の2タイプが用意されている。誘導制御系・電力供給系・通信データ処理系・通信系の電子機器を搭載する。なお、太陽電池はプログレスやATVと異なり、パドル形ではなく、電気モジュールや補給キャリアの外面に取り付けられる。これはHTVがプログレスやATVのような自動ドッキングではなく、共通結合機構(CBM)を用いての接続のため、カナダアーム2による把持(キャプチャ)させるためにはパドルがあると邪魔になるからである。しかし、HTVと同じ結合方式となる米国の商業補給機ドラゴンとシグナスは太陽電池パドルを使う方式を採用しており、設計次第ではどちらでも可能である。軌道変更や姿勢制御のための推進装置を装備する区画。燃料(MMH: モノメチルヒドラジン)タンク2基、酸化剤(MON3: 窒素添加四酸化二窒素)タンク2基、軌道変換用メインエンジン4基、姿勢制御用RCSスラスタ28基を装備する。実証機と2号機と4号機のメインエンジン (R-4D) とRCSスラスタ (R-1E) は、米エアロジェット社製であるが、3号機と5号機以降はIHIエアロスペース社製の国産品(メインエンジンはHBT-5、RCSスラスタはHBT-1)に置き換えられる。フェアリングは本来、H-IIBロケットに含まれる部分であるが、HTV打ち上げ時には専用の5S-H型を使用する。通常の5S型フェアリングより全長が長く、上部に1.4m四方のハッチがあり、HTVをフェアリングに収めた後も補給キャリアに入室でき、搭載試料や生鮮食料品などを打ち上げ直前にも搬入することができる(レイトアクセス)。レイトアクセスで搭載できるCTBの数は5号機で92個にまで増加し、他国の輸送船と比較してもHTVが最大の能力となっている。H-IIBロケットで高度200km/300kmの楕円軌道に打ち上げられたHTVは、NASAの追跡・データ中継衛星TDRSとの通信を開始し、筑波宇宙センターにあるHTV管制センター (HTV-CC) の管制を受ける。HTVが正常であることが確認されると、約3日間掛けて国際宇宙ステーション (ISS) から23kmの位置まで接近する。この距離では、きぼうに設置された近傍域通信システム (PROX) との通信が可能になる。きぼうに搭載されているGPS受信機を利用したGPS相対航法 (RGPS) により、ISSと同じ高度で、ISSの5km後方の接近開始点 (AI点 ()) に投入される。AI点まで正常な状態が確認できれば、AIマニューバ()により接近を継続する。何らかの理由で接近を中断したい場合は、AI点にて相対的に停止(ISSと一定の位置関係を保持)する。まず、RGPSによりISSの下方500mのRバー 開始点(R-bar Initiation:RI)に接近する。きぼう (JEM) の下部には反射板(コーナーキューブリフレクタ)が取り付けられており、これにレーザーを当てて正確な位置を測定しながら、ゆっくりと接近する(ランデブセンサ航法)。接近速度は毎分1 - 10mで、ISSもしくは地上から接近の一時停止や一旦後退、中止などの操作ができる。途中300mの位置で一旦停止し、ヨーマニューバを実施してヨー姿勢を0°に戻し、接近を再開する。最終的に、きぼう (JEM) の下方約10mの把持点 (BP ()) で、HTVは停止する。プログレス補給船や欧州補給機 (ATV) と異なり、HTVは自動ドッキングは行わない。他のCBMを使用するモジュールと同様、HTVはカナダアーム2で握持されて手動操作で結合する。まず、HTVは安全確保のため全てのスラスタを停止して待機する。次に、カナダアーム2がHTVを握持し、ハーモニーの地球側結合部に取り付ける。プログレスやATV(ロシア側のアンドロジナスドッキング機構を採用)と異なり、手動での結合方式を採用したが、それは結合に利用するISSの共通結合機構 (CBM) が、自動ドッキングを行う設計ではない(ターゲットマーカーが無い・ドッキング時の衝撃負荷に耐えられない・その他)からである。この接続方式の採用により、ハッチが1.2×1.2mの正方形(プログレスやATVのハッチは内径80cmの円形)となり、プログレスやATVと比べてより大きな物資の搬出が可能となった。HTVがドッキングするハーモニーはISSの最前部であり、HTVを使用してISSのリブーストを行うことはない。前述の通り、補給キャリアから補給品の取り出しと不要品の積み込みが行われると、HTVはISSから離脱する。HTVの係留中にスペースシャトルがドッキングする場合は、HTVのすぐ隣にシャトルのペイロードベイが位置してしまい、物資搬出に支障を来す。特にMPLMを輸送するミッションの場合、MPLMが結合に使用するハーモニーの地球側結合部をHTVが塞ぐことになる。このような場合は、あらかじめHTVをハーモニーの天頂側結合部に移しておく必要がある。実際に、HTV2号機では、STS-133の到着に備えて、HTV2をハーモニーの天頂側結合部に移動させた。ハーモニー天頂側はセントリフュージが使用する予定だったが、セントリフュージの計画中止で空いており、過去にはきぼう船内保管室の仮設置に使われた。CBMから分離すると、HTVはカナダアーム2でISSから離れた場所まで移動した後、把持を開放して放出され、ISSから遠ざかる。軌道離脱の噴射を行い、通常は南太平洋、場合によってはインド洋に向けて再突入させる。再突入時に発生する1000度以上の高温に耐えられる耐熱金属等でできた一部の部品(噴射ノズルやタンク等)を除き、確実に燃え尽きるように設計されており、アルミ合金・特殊樹脂などでできた本体、廃棄された不要品ともども大部分が燃え尽きその任を終える。燃え尽きなかったごくわずかの部品は南太平洋、またはインド洋の海中へと没する。2015年12月8日に開催された宇宙開発戦略本部で宇宙基本計画工程表が改訂され、現行のHTVの打ち上げは2019年度に打ち上げる9号機までとし、2021年度以降はH3ロケットによる新たな宇宙機(HTV-X)の打ち上げに移行することが正式に決定された。スペースシャトルが退役した2010年時点で、ISSへ物資を輸送する手段はHTVのほか、ロシアのプログレス補給船と、欧州の欧州補給機 (ATV) があった。しかしプログレスとATVは、共通結合機構(CBM、ハッチ形状は1.27m(=50インチ) × 1.27mの正方形の物資を通す事ができる角丸正方形)より小さなドッキング装置のハッチ(直径80cm)を用いるため、国際標準実験ラック (ISPR) はこのドッキング装置のハッチを通過することができず、輸送できなかった。また、定期的に交換するバッテリーなどの軌道上交換ユニット (ORU) も輸送することができなかった。これらの補給品は従来、スペースシャトルの多目的補給モジュール (MPLM) や曝露機器輸送用キャリア (ICC-VLD) で輸送していたが、シャトルが退役したことで、ドラゴン宇宙船の商業軌道輸送サービスによる物資輸送が始まった2012年までは、HTVが唯一の輸送手段であった。なお、国際標準実験ラック (ISPR) に関しては、計画中のものも含めてもHTV以外に輸送できる宇宙機はない。なおプログレスとATVは、ハッチを通過できる小型の補給品のほか、ISSの推進剤を補給するためのタンクとパイプを搭載しているが、HTVでは推進剤を輸送する能力はない。プログレスとATVはISSの進行方向最後尾にドッキングすることもあり、自らの推進機能を利用してISSをリブースト(微小な空気抵抗により自然に高度が下がっていくISSを、運用要求に応じた高度まで押し上げること)することができるが、HTVはISSの最前部に進行方向に対して垂直に結合することもあり、リブースト能力は持たない。小型の実験機材や食料、衣料などは、HTVやプログレス、ATVのいずれでも輸送することができる。これらは与圧室内に搭載され、ISS搭乗員が運搬する。廃棄時も同様である。HTVの場合、ISSとのランデブー・結合システムは従来のものと異なっている。他の宇宙船はロシア製の自動ドッキングシステム(アンドロジナスドッキング機構)を使用するが、HTVは世界で初めて「ランデブー飛行により接近した後、相対的に停止させ、ロボットアームで把持して結合させる」という、キャプチャー・バーシング方式が採用されている。この方式は、米国の民間会社2社が開発するCOTS宇宙機でも採用された。なお、無人ランデブー技術には技術試験衛星きく7号の実証経験が活用されている。2008年7月20日の読売新聞朝刊1面トップに、NASAがスペースシャトルの退役後、HTVを購入する計画があるという内容が掲載された。しかし7月21日、NASAは公式サイトにて「そのような事実は公式、非公式問わず検討したことはない」と完全否定した。シャトル退役以降のISSへのアメリカ担当分の補給手段として、NASAは現在民間開発による商業軌道輸送サービス (COTS) を利用する予定である。COTSにおいてロッキード社がアトラスロケットを用いてHTVを打ち上げる事を視野に入れたが、すぐに断念した。なお、HTVはもともと日本だけの物資を輸送するための輸送機ではなく、NASAの実験装置や各種補給品も搭載するため、購入はともかく利用は既に行われている。2015年には、ドラゴン7号機の打ち上げ失敗により、急遽NASAの依頼でこうのとり5号機で水再生システム用補給物資の輸送が行われた。当初の計画では、HTVは2015年度まで、次いで2016年度までに7機の打ち上げを予定していた。この間にHTVの改良が行われ、HTV3で国産化のための改良は完了した。以下に公表されている改良内容(採用未定のものを含む)を挙げる。補給部与圧区内の照明にはISS共通の蛍光灯が使用されている。この蛍光灯はアメリカ製で、割れてもガラスや水銀が飛散しないなど宇宙での使用に対応した特別品である。ISS計画の遅れや延長による経年劣化もあり、ISS内で点灯しなくなるものが相次いでいる。そこで、HTV用に発光ダイオード (LED) を使用したLED照明装置が開発され、2010年打ち上げの2号機から搭載された。この照明装置はパナソニック電工がJAXAの事業公募制度「宇宙オープンラボ」 に応募して採用されたもので、LEDは蛍光灯と比べ劣化や故障が起きにくく、万一故障しても20個のLEDと2組の電源回路を使用するため完全に不点灯になる可能性が低いとされている。まずHTVで使用されるが、引き続きISS本体にも採用するため、検討が行われている。蛍光灯、LED照明いずれの場合もISSからの離脱前に取り外され、ISSでの予備品として保管されている。実証機、2号機、4号機の推進モジュールには前述のようにエアロジェット製のメインエンジンとスラスタが使用されている。これはHTVが計画された1990年代にはまだ国産スラスタの軌道上実績が乏しかったためである。2000年代以降はBT-4やBT-6といった国産スラスタが多くの軌道上実績を挙げており、国産スラスタでも十分な信頼性が確保できるとの判断から国産化されることになり、メインエンジンにはHBT-5、スラスタにはHBT-1が採用された(IHIエアロスペース製)。ISS接近時や再突入時等の熱負荷が大きかったため、国産品開発では熱安定性の向上が求められ、燃焼室根元部温度の安定化、燃焼振動の抑制を実現した。開発したRCS/メインスラスタは共にマルチエレメント型でフィルム冷却のインジェクタ方式である。当初は2号機以降で適用される予定であったが、2008年の変更で3号機以降で適用される予定となった(実際にはHTV3号機と5号機以降で使用されることになった)。HTVは当初、一次電池のみを搭載する予定だったが、開発途中で太陽電池と蓄電池を追加した。その後、高性能の宇宙用一次電池が入手できなくなったため、どちらも同じリチウムイオン二次電池を使用することになった。しかし当初の設計を引き継いでいるため、一次電池の代わりに搭載した電池は太陽電池で充電することができず、電池が重複して搭載された設計になってしまっている。そこで、地上で充電した蓄電池に、軌道上で太陽電池から充電できるよう回路の設計を変更し、総重量の1割程度を占めている蓄電池を削減することが検討されている。HTVは太陽電池を本体表面に貼り付けているため放熱特性を悪化させている。HTVのモジュール設計を生かし汎用軌道間輸送機として使用する場合、太陽電池をパドル化することで、放熱特性改善による軽量化や、発電効率改善による太陽電池軽量化、飛行姿勢の自由度改善を図ることも検討された(検討のみで採用はされず)。H-IIBの第2段はH-IIAと共通のため、衛星搭載部の直径が3.2mであり、直径4mのHTVは裾を絞った形状になっている。H-IIBの衛星搭載部を4mに拡大すれば、HTVの構造を簡素化でき、軽量化につながる。また、H-IIBの2段目自体を1段目と同じ直径5.2m程度に大型化すれば、推進剤を増量してHTVの総重量を増加することも可能になる。これらの改良で補給品搭載量を増加できるほか、後述する発展型の開発にも活用できる。宇宙ステーション補給機、H-IIBロケット、きぼうなどを利用した日本の宇宙ステーション計画は毎年400億円ほどの費用がかかり、日本の宇宙予算全体に占めるその高額さが問題視されてきた。これを解消するために、2015年5月、文部科学省宇宙開発利用部会において、2016年から2020年に打ち上げられる3機のHTVのうち1機を、設計を全面的に変更した「新たな宇宙機」とする構想が明らかにされた。また、同年夏に文部科学省は、現行型のHTVの打ち上げは2019年度に打ち上げる9号機までとし、2021年度以降はコストを半減させた新たな宇宙輸送機「HTV-X」を使用することを構想した。なお、従来から検討されてきた#回収機能付加型宇宙ステーション補給機 (HTV-R)については計画が中止されている。2015年12月8日に開催された宇宙開発戦略本部で宇宙基本計画工程表が改訂され、現行型は2019年度に打ち上げる9号機までとし、2021年度以降にHTV-Xに移行することが、宇宙基本計画として正式に決定された。HTV-Xと仮称されたこの新型宇宙機では、開発コスト削減のため与圧部は大きな改変を加えずに引き続き活用する一方、前述の太陽電池のパドル化が図られるとともに、これまで分割されていた推進系と電気系モジュールがサービスモジュールに集約されるなど、構造設計が大幅に見直されている。こうしたシステムの効率化や軽量化により、輸送能力を保ったまま製造コストを半減するとしている。また貨物搭載部の置き換えや機能追加、サービスモジュールの能力向上により、月軌道間輸送機、深宇宙輸送機、軌道上サービス機、HTV-Rのような地球回収システムへの発展性を確保する。HTVは人間を乗せての打ち上げこそ行わないものの、ISS係留中に人が立ち入ることができる安全性を有し、無人での単独飛行が可能な宇宙船であることから、HTVを基点とした発展型が構想されてきた。なお、これらの構想は論文や暫定的な計画等で公表されているが、いずれも要素技術の開発に留まったか構想段階で留まっている等、正式に開発が決定したものではないことに留意されたい。2010年に、2011年のスペースシャトルの退役によりISSから実験試料などを持ち帰る手段が減少することが確実となった。2010年の時点で確実に使用可能な手段はソユーズ宇宙船のみであり、ソユーズに搭載できる物資は1機あたり60kgに限られることから、日本独自の物資回収手段となるHTV-Rの開発構想が持ち上がった。HTV-Rの実現により、将来の有人宇宙船開発に向けて大気圏再突入の経験を積むこともできるとされた。当初、HTV-Rの案には以下の3つが挙げられていた。オプション0は、現行のHTVをほぼそのまま流用できるため、回収できる重量は小さくなるものの、最も早く回収能力を獲得できる事が利点とされた。オプション1は、経費を抑えるため、現行のHTVに対して与圧部から非与圧部に設置する帰還モジュールへのアクセス経路を追加し、非与圧部に収まる大きさで有人機に近いレベルでの帰還能力と300キログラムの回収能力を獲得する案であり、オプション2は与圧部全体を将来の有人機に近い形状の回収モジュールに置き換え、有人機に近い形状での帰還能力と無人機として1.6トンの回収能力を獲得する案であった。採用案はオプション2で、2012年8月の宇宙政策委員会第2回会合時点で、2018年度以降の打上げが検討されていた。しかし、2013年10月の第57回宇宙科学技術連合講演会では、予算の問題から開発期間の短縮を図った上記の設計は意味がなくなったとして、デザインを全面的に一新したドラゴン宇宙船に近い案が公表されている。2014年4月、JAXAは「HTV搭載小型回収カプセルの開発」の技術提案方式の公告を出した。8月には契約相手方の選定結果の公告が出された。2015年10月22日、JAXAは模擬小型回収カプセルの落下試験を北海道大樹航空宇宙実験場の沖合で行った。2015年5月に発表されたHTV-Xの構想では、HTV-Xのさらなる将来ミッションへの対応として、HTV-Xの与圧部をカプセル型に置き換えた、HTV-Rのような地球回収システムの構想図が掲げられている。HTVの推進系を性能向上することで、ISSと月軌道などを連絡する月軌道間輸送機を開発する構想。開発中のLNG推進系は液体水素より宇宙空間での保存が容易で、ヒドラジンより性能や安全性が高いことから、月軌道間輸送機の推進剤にも適しているとして、HTVと組み合わせることで月軌道間輸送機を実現する構想があった。2015年時点では、HTV-Xの開発をする場合には、将来的にHTV-Xの能力や機能を向上させることによって、月軌道間輸送機へと発展させることができるようにすることが言及されている。JAXAは2015年に有人宇宙船開発の判断を行い、2025年に実用化することを掲げていた。HTVはISS係留中に宇宙飛行士が立ち入るため、有人宇宙船に相当する安全性を備えていることから、日本の有人宇宙船開発の基本になるものと位置付けられている。このため、上述の回収機能付加型宇宙ステーション補給機 (HTV-R) を実用化するなど、有人宇宙船の要素技術を開発し、2015年までに有人宇宙船の開発計画をまとめる方針であった。構想では2020年までにHTV-Rを発展させた有人回収カプセルと、無人の有翼再使用型回収システムを開発する。これらを統合し、2025年までに再使用型有人宇宙船を開発するとしていた。2008年6月に発表された構想によれば、HTVの推進モジュールに4人乗りの有人カプセルを組み合わせることを基本とする。最小構成の重量は6tで、H-IIA202型ロケットでの打ち上げも可能だが、脱出ロケットを持たないため有人打ち上げはできない。最大構成では、脱出ロケットや居住モジュールも搭載され、H-IIBロケットの2段目を大型化して対応する。なお、この構想は2001年にNASDA先端ミッション研究センターが構想を発表した「ふじ」と共通点が多い。ソユーズや神舟は上から順に脱出ロケット、居住モジュールに相当する部分、有人カプセル、電気・推進部の順なので、脱出ロケットは補給キャリアごとカプセルを脱出させる。HTV有人型は有人カプセル、推進モジュール、居住モジュールの順になるので、脱出時は有人カプセルのみを脱出させる。軌道に到達すると、補給キャリアを後方から前方に入れ替え、ソユーズなどと同じ構成になるとされた。HTVを基に、日本独自の宇宙ステーションを建設する構想も存在する。補給キャリアの代わりに宇宙ステーションのモジュールを搭載して打ち上げたり、HTV自体を宇宙ステーションの推進機能として利用することが考えられた。これは、ロシアの宇宙ステーションと同じ手法である。ミールやISSのロシア製モジュールの多くはTKS宇宙船を基に開発したため、自力でISSにドッキングすることが可能で、ISSの高度や姿勢を制御するのにも使われている。また中国の神舟宇宙船も、軌道船と組み合わせて宇宙ステーションとして使用することが想定されている。JAXAの一案では、HTVを基にした推進モジュールや、HTVで輸送される太陽電池アレイ、居住モジュールを打ち上げ、これと既存のきぼうを組み合わせることで日本独自の小型宇宙ステーション (JSS) を実現する。なお、宇宙政策シンクタンク「宙の会」がこれとほぼ同じ趣旨の構想を発表しているが、こちらはきぼう以外にもISSのモジュールを流用しているため、より大型である。HTVの実物大展示モデルは、JAXA筑波宇宙センターの展示館「スペースドーム」内に垂直に立てられた状態で展示されている。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。