LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

船舶工学

船舶工学(せんぱくこうがく、英語:marine engineering)とは、船舶に関する工学である。特に設計理論や造船工作に関わる領域を指して造船学とも言う。本項目では水上船舶の工学について説明する。潜水艦やホバークラフト、水上での表面効果を利用した航空機などは別記事を参照のこと。船舶工学は船舶の建造(造船)、安全な航行方法や運航にかかわる人間の育成、検査、補修、合理的な海上物流などを取り扱う工学である。船舶はまず水上において航行する能力が求められるが、これを効率的で安全に行うために、波や浮力についての物理学的知識と、具体的な船体設計のための構造力学及び機械工学が必要となる。船舶は貨物や旅客の輸送などさまざまな用途に用いられるため、その目的に適した設計が研究されている。船舶は大分類として以下の3つ船型とそれらの分類外のその他の特殊な船型に類別できる。単胴船、双胴船、三胴船の違いは水面下に沈む下部船体の数である。また、双胴船や三胴船での高速船用の船型としてウェーブ・ピアーシング型(波浪貫通型、Wave-piercing)の船舶が2000年代前半から実用化されている。水面下に沈んで水と直接接する船体が1つである船型である。多くの船が単胴船であり、船舶の歴史においても最も古く、船舶設計や造船技術の基本となった。双胴船や三胴船は単胴船からの派生デザインといえる。1人乗り手漕ぎボートから大型タンカーまでの船舶が単胴船であり、特に高速航行や波浪に対する非常に高い安定性、幅広い甲板を求めない場合には、燃費や建造コストの点で有利である。水と接する船底部の形によって「ラウンドビルジ型」と「ハードチャイン型」に分かれる。多くの単胴船は船底が丸くスムースなラウンドビルジ型となっているが、船底での揚力を得て水面を滑走するモーターボートのような小型艇は鋭角的な船底を持つハードチャイン型である。また、はしけの仲間は流線型をとらずに四角い箱型の「バージ船型」というものもある。単胴船での甲板上の上部構造物(上構)の配置によって、更にいくつかの船型に分けられる。上甲板上の建造物の内で左右の両舷に渡って占めているものを「楼」(ろう)や「船楼」(せんろう、Erection)と呼びその位置によってそれぞれ、船首楼(Forecastle)、船橋楼(Bridge)、船尾楼(Poop)と呼ばれる。この楼の配置によって以下のように分かれる。水面下に沈んで水と直接接する下部船体が細長く左右2つに平行している船型である。上部船体部分はほぼ四辺形に広く取れるため車輌用フェリーや海上作業用プラットフォームに適している。波浪に対しては特に左右方向の揺れ(ローリング)が単胴船に比べて小さくなる利点がある。このことから、ブローチングに対する危険度が減じられる。しかし横波による揺れ(ローリング)の固有振動数が高く、少しの短波長の横波でも波に追従して激しく揺れるという問題点がある。曳き波の発生が単胴船に比べて小さいことも、高速航行時にも周囲への影響が少ない点で有利となる。センターバウがあればバウダイビングに対する安全性の確保に貢献する。双胴船は古くから考案されていたが、単胴船に比べて水中表面積が増加し摩擦抵抗や粘性圧力抵抗が大きくなる点や、下部船体を左右に分ける事による強度確保のため船体重量が増すことで造波抵抗と他の2つの抵抗を増やしてしまうなどの不利な要素が排除出来ずにいたが、軽量なアルミ合金の普及により実用的な双胴船が建造されるようになった。大型船が港に入港する時には小回りが効かないためにタグボートで押したり曳いたりしてもらって接岸することがある。多くの大型船、特に大型客船では「サイドスラスター」と呼ばれる横方向に小さな推進力を備えた船が多い。サイドスラスターは水面下で船体を左右に貫くトンネルとその中で回転する電動スクリューにより構成される。船首側にあるものは「バウスラスター」、船尾側にあるものは「スターンスラスター」と呼ばれる。複数のサイドスラスターを持つ船も珍しくなく、大型客船では船首に3つ、船尾に3つ備える船も現れている。航行中に舵の代りに使おうとしても、前後方向の水流にじゃまされてスラスターの横推力が発揮できなくなり、5ノット程度を境に使用されない。推進器の方向が変えられるアジポッドなどを備える船は、それによって自由な操船が行なえるために、普通はサイドスラスターを持たない。船体の強い振動は人間にとって不快であり、船体構造材の金属疲労の原因にもなるため、船舶工学にとって振動軽減は重要なテーマとなっている。大まかに言えばディーゼル・エンジンの出力はシリンダー内の体積に比例するが、低速で航海する船体が受ける抵抗は水と接する表面積に比例する。このため、3乗の出力効率と2乗の抵抗成分によって船の大型化が輸送効率という意味での燃費効率の向上につながる。船舶用のディーゼル・エンジンは長ストローク化や低回転化、排気タービン過給器やインタークーラーの装備によって大きく燃費が向上した。また、ディーゼル・エンジンで電子制御システムを採用して、燃料噴射と排気弁の制御タイミングを最適化することで、燃費を向上しながらNOx排出量を抑制している。プロペラは出来るだけ大きなものを1つだけ水中でゆっくりと回すのが効率が良くなる。多軸推進は経済性の面では不利となる。2重反転プロペラは回転エネルギーが効率よく推進力に変換できるので燃費向上には有利となる。排水量型船体の高速化は造波抵抗と粘性圧力抵抗の急速な増大化を招き、摩擦抵抗も比例して増大するが、ウェーブ・ピアーサーのような船型によって大きな抵抗の増大が避けられ、高速を生かして1隻で2隻分の働きを行なえるなら人件費や燃料費、船体購入費やメンテナンス費などの総合的なコストを勘案すれば必ずしも割高とは限らないといえる。ただ、東京⇔小笠原航路に就役予定で東京都が三井造船に求めた高速船「スーパーライナーオガサワラ」号の事例では、14,500総トンの船体で最高速度39knを実現したものの、定員740人で運べる貨物はたった210トンであり、しかも往復で700トン以上の燃料を消費することから、計画は白紙に戻されて完成した船体の使い道がなくなってしまう事態となった。このように、高速船を長距離航路で運用することはコスト的に引き合わない可能性が高い。造船は海や湖、河に面した造船所によって行なわれる。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。