高温超伝導(こうおんちょうでんどう、)とは、高い転移温度 () で起こる超伝導である。「高温」の意味は、時代、状況によって異なるが、一般に高温超伝導と言えば、ベドノルツとミューラー(ミュラー)が、La-Ba-Cu-O系において1986年に発見したことから始まり、その後続々と発見された転移温度が液体窒素温度(, )を越える一連の銅酸化物高温超伝導物質と、その超伝導現象のことを指す場合が多い。高温超伝導を示す物質のことを高温超伝導体という。銅酸化物であるものは銅酸化物高温超伝導体という。高温という語は、通常は人間が「熱い」と感じるほど温度が高いことを表すが、高温超伝導における高温とは、従来の超伝導体と比較すると高温である程度を指す。なお、ミュラーとベドノルツはこの業績により、1987年のノーベル物理学賞を受賞した。1985年、誘電体研究で著名なIBMチューリッヒ研究所のフェローとなっていたアレックス・ミューラーのもとで、ジョージ・ベドノルツはチタン酸ストロンチウムの研究を行っていた。この物質は強誘電体として良く知られている絶縁体であるが、電子ドープにより半導体から金属的となり、低い転移温度ながら超伝導を示す。ミューラーはヤーン・テラー型格子変形と超伝導との関係に興味をもっていた。ベドノルツはある日、図書室でLa-Ba-Cu-Oペロブスカイト系で液体窒素温度まで金属になるという論文を知り、早速作ってみると、試料は付近から抵抗が減少し、以下でゼロ抵抗になるように見えた。彼らはドイツの会議でこの結果を発表したが、誰にも評価されることはなかった。そこでIBM T.J. Watson研究所に試料を送って真偽を鑑定してもらったが、比熱測定に超伝導転移による跳びが見られなかったことから超伝導ではないという結果が返ってきた。超伝導を認められなかったものの、1986年4月、ベドノルツとミューラーはとりあえずZeitschrift für Physikというドイツの学術誌に論文を投稿した。この論文が公表された1986年、少なくとも世界の数カ所で結果の追試が行われた。このうち東京大学の田中グループは、この物質の結晶構造の同定とマイスナー効果を確認し、誰もが間違いないと確信できるレベルでLa-Ba-Cu-O系で超伝導が起こっていることを証明した。田中研で超伝導の存在が判明したのが1986年11月13日であり、12月5日にボストンの材料研究学会においてこの結果が発表された。これ以後、数年間にわたり高温超伝導探索のフィーバーが続いた。1987年2月には、級で転移するY-Ba-Cu-O(Y系超伝導体)が発見された。短期間のうちにがも高められたことになる。超伝導転移温度はその後も次々と塗り替えられており、大気圧下では1993年に発見されたHg-1223のが最も高い温度となる。2001年:青山学院大学の秋光純らのグループがが上限と考えられるBCS理論基づく超伝導体で、限りなく上限に近い転移温度の二ホウ化マグネシウムを発見。金属系超電導物質では最高温度となる。2005年:水銀系銅酸化物において高圧力下でのの転移温度を記録したことが報告された。ただし超伝導現象の最も基本的な性質であるゼロ抵抗は全く実現されておらず、この温度を超伝導転移温度と呼んでいいかについては議論がある。2008年:東工大の細野秀雄らにより、鉄を含んだ組成の酸化物が超伝導を示すことが分かり、新たな鉱脈として大きな注目を集めている(鉄系超伝導物質)。ただ、超伝導転移温度は最も高い場合でも56K程度であり、銅酸化物高温超伝導体に対しては今のところ低い。2015年:硫化水素が150GPa(150万気圧)の超高圧下において()というこれまでになく高い温度で超電導状態になったとの報告が、Nature誌に掲載された。さらに、同記事によれば、硫化水素中の硫黄原子の7.5%をリンに置換した上で250GPaの圧力をかければ、()で超電導状態になるという。これは水の凝固点よりも高温である。銅酸化物高温超伝導に関する研究論文は、1987年前後をピークとして発表数は減少傾向を示している。学術データベースの統計から判断すると、高温超伝導に関する研究は、2010年から2015年までの間に行き詰まりを迎えるとする見方もあった。2016年1月29日:東京大学とパリ南大学の共同研究チームがBCS理論とは別の銅酸化物高温超伝導体の超伝導が高温で起きる原因となる新しいメカニズムを発見したと発表。2月1日付けのアメリカの科学雑誌「フィジカル・レビュー」に掲載された。数値シミュレーションによりBCS理論では説明の付かない電子の振る舞いを発見し、この異常な振る舞いが高温超電導の直接の原因であることを突き止めた。高温超伝導体の設計に新たな指針を与える成果。また、2000年前後には、フラーレンなどでも高温超伝導が生じるとする論文が数編提出されたが、後に全て研究者による捏造と判明して撤回された 。高温超伝導体は国際電気標準会議 (IEC) の国際規定IEC60050-815(2000) と日本工業規格JISH7005(1999) により定義されており、「一般的に約以上の を持つ超伝導体」とある。しかし、転移温度がを超えるものが一般的になった今では液体窒素温度(、)以上で転移するものを高温超伝導体と呼ぶことが多い。 (~)や (~)といった銅酸化物高温超伝導体は全て、ペロブスカイト構造を基礎とした結晶構造をしている。これら銅酸化物高温超伝導体の構造には以下のような特徴がある。これらの超伝導体は、構成する元素の頭文字をとって呼ばれることが多い。たとえばはYBCOと呼ばれ、はBSCCO(ビスコ)と呼ばれる。一方、構成元素の物質量比(モル比)で呼ぶこともある。たとえばはY123、はBi2223などである。高温超伝導体にはキャリアがホールであるものと、電子のものの2種類がある。前者をホールドープ型、またはp型と呼ばれ、後者は電子ドープ型、またはn型と呼ばれる。ホールドープ型の高温超伝導体はホール濃度と温度により、右図のような状態をとる。ホール濃度がゼロのとき、反強磁性となり、ドープをすると反強磁性が消え、擬ギャップと呼ばれる状態になる。さらにドープすると超伝導になる。ドープを増やすと超伝導転移温度は上昇する。この領域をアンダードープ領域と呼ぶ。さらにドープすると転移温度は下がる。この領域をオーバードープ領域と呼ぶ。これ以上ドープすると超伝導は消え金属的になる。高温超伝導においても従来型の超伝導と同様にクーパー対が形成されていることが分かっている。従来型超伝導では、BCS理論により、フォノンを媒介とするクーパー対の形成機構が解明されているのに対し、高温超伝導におけるクーパー対の形成機構に関しては、完全な意見の一致は得られていない。高温超伝導体の発見後すぐに行われた同位体効果実験から、高温超伝導機構はフォノン機構では説明できないとされている。膨大な実験的・理論的な研究により、高温超伝導物質中の2次元面内の電子系における、反強磁性的なスピンの揺らぎを媒介にしたクーパー対形成機構で、高温超伝導の機構を理解できるという立場が主流となっている。しかし酸素の同位体置換により超伝導電子密度が変化するという報告もあり、フォノンも何らかの寄与をしているものと考えられている。REBaCuOyは希土類を含む銅酸化物超伝導体で線材化の技術が進み、実用化にむけて開発が進みつつある。セラミクスであるREBCO超伝導体はもろいので、線材として必要な屈曲性に劣るが、薄膜化する事により柔軟性を付与する事が可能になり、線材として使用することが可能になる。結晶配向性によっても臨界電流密度が大きく変わるため、試料全体に渡った結晶軸方位の 整列が必要でエピタキシャル成長を利用して線材の全体にわたって配向したREBCO膜を作製する 技術が要求される。 結晶配向性の良好な緩衝層、高い超伝導特性を持つREBCOエピ膜、長尺に渡って超伝導特性が均一なREBCOエピ膜の作製が鍵となる。の発見で転移温度が液体窒素温度を越えてから、高価な液体ヘリウムにかわって安価な液体窒素を使えることから実用への期待が高まった。しかし加工が難しいことや臨界電流密度を高めるのが難しいことから応用はなかなか進んでいないが、近年はヘリウムの供給不足と価格高騰も重なり、高温超電導体ならではのバルクでの用途が徐々に見出されつつある。応用としては送電線、高周波通信用超伝導フィルター、SQUID、磁界検出器、超電導リニア、米海軍の艦船推進用モーター、核磁気共鳴、MRIなど。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。