LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

円 (数学)

数学において、円(えん)とは、平面(2次元ユークリッド空間)上の、定点 O からの距離が等しい点の集合でできる曲線のことをいう。ここで現れる定点 O を円の中心と呼ぶ。円には、その中心が1つあり、また1つに限る。中心から円周上の 1 点を結んだ線分を輻(や)とよび、その長さを半径というが、現在では輻のことを含めて半径と呼ぶことが多い。中心が点 O である円を、円 O と呼ぶ。定幅図形の一つ。円が囲む部分、すなわち円の内部を含めて円ということもある。この場合は、曲線のことを円周という。これに対して、内部を含めていることを強調するときには円盤という。また、三角形、四角形などと呼称を統一して、円形ということもある。数学以外の分野ではこの曲線のことを「丸(まる)」という俗称で呼称することがある。円周上の 2 点 A, B があるとき、線分 AB を弦といい、弦 AB という。特に円の中心を通る弦を円の直径という。直径の長さは半径の 2 倍である。円周の長さは、円の大きさによってさまざまであるが、円周の長さのの直径の長さに対する比の値は、円に依らず一定であり、これを円周率といい、普通 で表す。円の半径を "r"(半径の英語 radiusの頭文字が由来) とすると、円周の長さは 2"r" で表される。また、円の面積は、"r" で表すことができる。同じ長さの周を持つ閉曲線の中で、面積が最大のものである。(等周問題)弦を含む直線を、この円の割線と呼ぶ。割線によって円周は 2 つの部分に分けられる。このそれぞれの部分を 円弧 (arc) または単に弧という。円周上の2点 A, B を両端とする弧を弧 AB と呼ぶ。記号では、⌒AB と表記する(記号 ⌒ は AB の上にかぶせて書くのが正しい)。これでは優弧・劣弧のどちらであるかを指定できていないデメリットがあり、一方を特定したい場合は、その弧上の点 P を用いて ⌒APB のように表記する。円 O の周上に2点 A, B があるとき、半径 OA, OB と弧 AB とで囲まれた図形を扇形 (sector) O-⌒AB という。また、扇形に含まれる側の ∠AOB を弧 AB に対する中心角という。中心角とその角が見込む弧の長さは比例する。同様に、中心角とその角が切り取る扇形の面積も比例する。弦 AB と弧 AB で囲まれた図形を弓形 (segment) という。弧 AB に対して、弧 AB 上にない円 O の周上の点 P を取るとき、∠APB を弧 AB に対する円周角という。弧 AB に対する円周角は点 P の位置に依らず一定であり、中心角 AOB の半分に等しい(円周角の定理)。特に弧 AB が半円周のときは、弧 AB に対する円周角は直角である(直径を見込む円周角)。円 O の周上に 4 点 A, B, C, D があるとき、四角形 ABCD は円 O に内接するという(内接四角形)。このとき、円 O を四角形 ABCD の外接円という。四角形が円に内接するならば、四角形の対角の和は平角に等しい(内接四角形の定理)。円に内接する四角形の外角の大きさは、その内対角の大きさに等しい。また、これらの逆も成立する(四点共円定理、内接四角形の定理)。円周と直線が1つの共有点を持つとき、その直線を円の接線 (tangent) といい、共有点を接点という。円の中心と接点を結ぶ半径(接点半径)は、接線と接点で直交する。円の外部の点 A から円 O に2つの接線が描ける。この接点を S, T とすると、線分 AS, AT の長さを接線の長さという。接線の長さは等しい。円の接線とその接点を通る弦が作る角は、その角の中にある弧に対する円周角に等しい(接弦定理)。すなわち、下図で AT が接線ならば、∠BAT = ∠APB である。接弦定理は逆も成立する。円の接吻数は6である。これは当たり前のことだが、2つの円(円 A, 円 B とする)の位置関係は次の場合に分けられる。2つの円に共通する接線を共通接線という。特に、2円が共通接線に関して同じ側にあるとき共通外接線、異なる側にあるとき共通内接線という。上記の場合分けにおいて、描ける共通接線の個数は、デカルト座標で、点 ("a

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。