LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

マルコフ連鎖モンテカルロ法

マルコフ連鎖モンテカルロ法(マルコフれんさモンテカルロほう、、MCMC)とは、求める確率分布を均衡分布として持つマルコフ連鎖を作成することをもとに、確率分布のサンプリングを行うアルゴリズムの総称である。M-H アルゴリズムやギブスサンプリングなどのランダムウォーク法もこれに含まれる。充分に多くの回数の試行を行った後のマルコフ連鎖の状態は求める目標分布の標本として用いられる。試行の回数を増やすとともにサンプルの品質も向上する。求められる特性を持つマルコフ連鎖を作成することは通常難しくない。問題は許容できる誤差内で定常分布に収束する試行の回数を決めることである。適切な連鎖なら任意の位置から始めても定常分布に速く達し、これを高速混合(rapid mixing)とよぶ。典型的なMCMCは常にある程度の初期値の影響が残るため目標分布しか近似することができない。CFTP法()など、より洗練されたMCMCベースのアルゴリズムは完全標本を作成することができるが、より多くの計算と(期待値では有限だが)限界のない実行時間を要する。このアルゴリズムの最も一般的な応用は多重積分を数値的に計算することである。ランダムに歩き回る粒子の集団を想定し、粒子が点を通過するたびに、その点の被積分関数の値を積分に加算する。粒子は次に積分への貢献が高い所を探して複数の仮の動作をする。このような方法はランダムウォーク法とよばれ、これは乱数的なシミュレーションつまりモンテカルロ法の一種である。従来のモンテカルロ法で用いられる被積分関数のランダムな標本が独立であるのに対して、MCMCで用いられる標本は相関がある。被積分関数を均衡分布に持つようなマルコフ連鎖を作成する必要があるが、多くの場合において容易に行うことができる。多重積分はベイズ統計学、計算物理学、計算生物学などにしばしば現れるため、そのような分野でMCMC法も広く使われている。例としては や を参照のこと。マルコフ連鎖モンテカルロ法において、均衡分布の近辺を小さなステップで無作為に動き回る粒子を想定したアルゴリズムが多い。これをランダムウォーク、または酔歩という。この方法は容易に実装と解析ができるが、粒子はしばしば折り返して既に調べた空間を調べ始めてしまうため、粒子が全空間を調べるのに長い時間がかかってしまう。以下にランダムウォークを用いたMCMCのいくつかを並べる:より洗練されたマルコフ連鎖モンテカルロ法は粒子が折り返してしまうのを防ぐなんらかの方策を用いる。これらのアルゴリズムの実装は難しくなるが、より高速な収束を得られることがある。つまり、少ない試行から正確な結果を得られるということである。はM-H アルゴリズムの拡張で、次元の異なる空間からの候補を許容する。この手法は1995年にブリストル大学のピーター・グリーン()によって考案された。次元の変化する MCMC は分布が大正準集団である問題(箱の中の分子の数が変動する場合など)を解くのに統計物理学の分野で長い間使われている。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。