距離(きょり、)とは、ある2点間に対して測定した長さの量をいう。本項では日常生活および高校数学の範囲内で使われている距離について触れる。大学以上で扱うより専門的な距離については距離空間を参照。具体的な距離の定義は1つでなく、直線距離を指して距離ということもあれば、高速道路のインターチェンジ間の距離や陸上競技のトラック競技において用いられる距離のように、特定の経路に沿って測った長さを指すこともある。前者について特に距離と呼び、後者については道程(みちのり)と、こだわる向きも一部に見られることがあるが、マンハッタン距離といった言葉もあり、特にこだわるべきものではない。とりうる経路が複数ある時に、その中で距離の最小(あるいは下限)値を最短距離といい、最短距離を実現する経路を最短路という。本節は高校数学で習うユークリッド幾何学での距離について触れる。1次元空間の2点間の直線距離は以下の通り。2次元空間の2点間の直線距離は以下の通り。3次元空間の2点間の直線距離は以下の通り。ある2点間を(道路状態や地形、建築物等を一切無視し)直線状に測ったときの長さを直線距離という。このとき直線距離は2点間における最短の長さ、即ち最短距離であり、これ以外の方法を用いて2点間の長さを測定しても、直線距離より短くなることはない。3次元空間において、球面上の異なる2点を結ぶ直線は必ず球体の内部を通る。実際は地球は球体ではないが球体であるとすると、地球上の2点を結ぶ直線も地球内部を通る。通常は地球上の距離は大圏コースによって地表を通る曲線の長さを距離とする。点と直線または平面との距離とは、その点から直線または平面へ引いた垂線の長さをいう。これは、その点と直線内または平面内の点との距離の中で最短の距離になる。4次元以上のユークリッド空間内での3次元以上の超平面と点との距離も同様である。2本の平行線のうち一方の直線内の点と他方の直線との距離(垂線の長さ)は全て等しく、この長さを2本の平行線の間の距離という。2つの平行平面の間の距離も同様に定義できる。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。