LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

スネルの法則

スネルの法則(スネルのほうそく)とは波動一般の屈折現象における二つの媒質中の進行波の伝播速度と入射角・屈折角の関係を表した法則のことである。屈折の法則(くっせつのほうそく)とも呼ばれる。この法則はホイヘンスの原理によって説明することができる。媒質Aにおける波の速度をformula_1、媒質Bにおける波の速度をformula_2、媒質Aから媒質Bへの入射角(またはBからAへの屈折角)をformula_3、媒質Bから媒質Aへの入射角(またはAからBへの屈折角)をformula_4とすると、以下の関係が成立する。ここで、formula_6の値を媒質Aに対する媒質Bの相対屈折率と定義し、これをformula_7(またはformula_8)で表す。以上のことをまとめるととなる。アレクサンドリアのギリシャ人プトレマイオス は光の入射角・屈折角の関係を見出したが、角度が大きいときには不正確だった。プトレマイオスは実験に基づいた正確な法則を見つけたと確信していたが、理論に合うようにデータをごまかしていた(確証バイアス) 。イブン・アル・ハイサムは著書「光学の書」(1021)で屈折の法則の発見により近づいたが、発見には至らなかった。屈折の法則は、バグダットのイブン・サフル()の論文"Burning Mirrors and Lenses"(984)の中で初めて正確に記述された。サフルは幾何収差のないレンズの形状を算出するためにこの法則を利用した.。屈折の法則は1602年にトーマス・ハリオットによって再発見された。ハリオットはこのテーマについてケプラーと文通していたにも関わらず、この結果は出版されなかった。1621年にヴィレブロルト・スネルも独立にこの法則を発見したが、生前には出版されなかった。これと独立してルネ・デカルトは1637年に発表した方法序説試論において、発見的な運動量保存の議論を使って正弦関数で表された屈折の法則を導き、光学の問題を解くために利用した。ピエール・ド・フェルマーはデカルトの導出を受け入れず、自身の最小時間の原理に基づいて同じ結果を導いた。科学史家のディクステルホイスによれば、「デカルトはスネルの論文を見て自分の証明を作り上げたと、イサーク・フォシウス()が"De natura lucis et proprietate"の中で述べている。我々は今日この非難が不当なものであると知っているが、この話はこれまで何度も採用されてきた。」という。フェルマーとホイヘンスも、デカルトがスネルの論文を盗用したと非難している。フランス語でスネルの法則は「デカルトの法則」「スネル-デカルトの法則」と呼ばれている。クリスティアーン・ホイヘンスは1678年に「光についての論考」の中で、今日ホイヘンス=フレネルの原理と呼ばれる手法を使って、スネルの法則がどのように光の波動性から導かれるのかを明らかにした。媒質が変化しても同一波の周波数は変化しないので、上の法則をさらに発展させると、次のようになる。光波は真空中も伝わる波なので、光波においては真空に対する物質固有の相対屈折率を絶対屈折率と定義する。ここで媒質Aの絶対屈折率をformula_13、媒質Bの絶対屈折率をformula_14、と表すとよって以上のことをまとめてという関係が成り立つ。また、平行多重層における屈折については、媒質Xの絶対屈折率をformula_17と表すと、という関係が成り立ち、これは2媒質間に他媒質があった場合でもそれを無視してこの法則を用いることができることを示す。ここで注意しておきたいのは、絶対屈折率は光波についてのみの概念であるということである。(電磁波以外の波は真空中には存在しない。) また、複屈折に於ける狭義の定義ではスネルの法則とは屈折率 formula_20 は一定なのであるが、屈折率が角度の関数 formula_21 である場合も(広義の)スネルの法則という。以上の公式により、臨界角 (屈折が起こる最大の入射角) の大きさが屈折率によって定まることが分かる。formula_22で光が媒質Bから媒質Aに入射するとき、媒質BからAへの入射角をformula_25とするとが全反射の起こる条件である。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。