LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

スーパーカミオカンデ

スーパーカミオカンデ()とは、岐阜県飛騨市神岡町(旧吉城郡)旧神岡鉱山内に設置された、東京大学宇宙線研究所が運用する世界最大の水チェレンコフ宇宙素粒子観測装置である。 と略されることもある。小柴昌俊東京大学名誉教授のノーベル賞受賞研究の元となったカミオカンデと同じ原理で、大きく高性能化されている。50,000トンの超純水を蓄えた直径40m、深さ41.4mのタンクと、その内部に設置した浜松ホトニクス社製の11,200本の光電子増倍管からなり、カミオカンデよりも性能が大幅に上がっている。この光電子増倍管でチェレンコフ放射を観測することにより、様々な研究を行う。1996年にスーパーカミオカンデが稼動したことにより、カミオカンデはその役目を終え、カムランドとして生まれ変わった。主な目的は、次の通り。陽子崩壊観測を主目的としたカミオカンデは、Kamioka Nucleon Decay Experiment(神岡核子崩壊実験)の略した名称だった。上記の目的に加え、ニュートリノによる天体観測を当初から目的のひとつとしていたスーパーカミオカンデは、Super-Kamioka Neutrino Detection Experiment(超神岡ニュートリノ検出実験)とSuper-Kamioka Nucleon Decay Experiment(超神岡核子崩壊実験)の双方を略した名称となっている。スーパーカミオカンデを、東京大学宇宙線研究所附属神岡宇宙素粒子研究施設と紹介する文献もあるが、正確には東京大学宇宙線研究所附属神岡宇宙素粒子研究施設に存在する「装置の名前」がスーパーカミオカンデである。同施設はスーパーカミオカンデを中心に、ニュートリノや陽子の研究を行うための施設となっている。1991年12月に空間の掘削を開始。建設には旧神岡鉱山の運営者であった三井金属や三井造船が参画した。1993年8月に深さ40mの円柱状に掘り下げる工事が完了。1995年中頃にタンクの建設が完成。1995年6月から光電子増倍管の取り付け作業と電子回路への接続が行われ、同年12月に完了した。以後、2か月以上を要して5万トンのタンクを純水で満たし、1996年4月1日0時に完成した。1996年4月1日0時から後述の破損事故までの時期を Super-Kamiokande I (SK-I) と呼称する。1998年には地球の反対側から飛来する大気ニュートリノの数が少ないことを示し、ニュートリノ振動の確たる証拠を世界に発信した。これにより、スーパーカミオカンデ実験グループはこの年の朝日賞を受賞している。1999年には世界初の長基線ニュートリノ実験K2Kを開始し、大気ニュートリノで発見されたニュートリノ振動の検証に成功した。2001年にはカナダのSNO実験の結果と合わせ、太陽から来るニュートリノも振動していることを発見した。これらの実験で検証されたニュートリノ振動に関する業績によって梶田隆章が2015年度のノーベル物理学賞を受賞している。2001年11月12日11時01分に光電子増倍管の70%を損失するという大規模な破損事故が発生した。光電管爆縮時の衝撃波による連鎖破壊で、原因は補修作業時の負荷で基部にクラックが入ったためとされている。破壊された数量の光電子増倍管の生産には約4年を要するため、2002年光電子増倍管にプラスチックカバーを被せる防爆措置を行った上で、予備を加えた5,200本の光電子増倍管を再配置し、部分復旧された。これを「Super-Kamiokande II」と呼称する。この破損事故の震動は、近くの高感度地震観測網 (Hi-net) 神岡観測点 (KOKH) において観測されている。2005年7月より、スーパーカミオカンデの完全再建計画の実行が東京大学本部を通じて文部科学省によって承認され、同年10月から観測を中止して破損光電管の交換作業を開始、2006年4月にほぼ完了した。2006年7月11日に建造時と同数の光電管を備えた「Super-Kamiokande III」として観測を再開した。2008年夏には、さらなる性能向上のために、信号読み出し回路の総入れ替えを行った。以降を「Super-Kamiokande IV」と呼ぶ。2009年11月、民主党が行った行政刷新会議事業仕分けにおいて「国立大学運営費交付金(2)特別教育研究経費」の交付額についての評定がなされた。仕分けグループによる評定の結果、「廃止6名、縮減6名、要求どおり2名」となり、予算の縮減が決定した。この評議では研究の意義などは一切議論がなされていないこと、ただ単純に予算全体を一括して出現すべきであるという判断がなされた。実験代表者の鈴木洋一郎は、予算の縮減による影響で観測が止まってしまう可能性もあり、そうなると稀有なニュートリノの検出を逃してしまうこと、測定器の質を維持できなくなることなどによって、世界トップとなった日本のニュートリノの研究のはずが二流、三流となってしまうと主張している。本実験施設と KEK-PS(陽子加速器)を用いたニュートリノ振動実験によって、ニュートリノに質量があることが世界で初めて確認された。この発見により2015年に梶田隆章がノーベル物理学賞を受賞した。今後は、J-PARC の大強度加速器を用いた同実験によって、ニュートリノの正確な性質について明らかになる。本実験プロジェクトでは、今後も太陽ニュートリノ観測、宇宙由来ニュートリノ観測、陽子崩壊観測、また東北大学がカミオカンデの跡地に設置したカムランド検出装置とも、密接に連携しニュートリノ物理学を発展させる予定になっている。また、国際プロジェクトとして進められている、ニュートリノ観測網の一部として、今後も素粒子物理学の重要な実験装置となる。今後の計画としては、スーパーカミオカンデの20倍の規模(タンク体積100万トン)になるハイパーカミオカンデの建設計画(2025年の実現を目指す)が検討されている。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。