LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

数値解析

数値解析(すうちかいせき、"Numerical Analysis")は、数学および物理学の一分野で、代数的な方法で解を得ることが不可能な解析学上の問題を(通常は有限精度の)数値を用いて近似的に解く手法に関する学問である。史上最初の数学的記述の一つとして、バビロニアの粘土板 YBC 7289 を挙げることができる。これは六十進法で formula_1 (単位矩形の対角線の長さ)を数値的に近似したものである。三角形の辺の長さを計算できること(そして、平方根を計算できること)は、特に建築において重要である。例えば、縦横それぞれ2メートルの正方形の壁の対角線は formula_2 メートルとなる。数値解析は、このような実用的計算の長い伝統に続くものである。バビロニアの formula_1 の近似のように、現代の数値解析も厳密な解を求めようとするものではない。何故なら、厳密な解を有限時間で求めることは不可能だからである。その代わりに、数値解析の多くは、ある程度の誤差の範囲内の近似解を求めようとする。数値解析は自然科学および工学のあらゆる分野に応用がある。計算言語学や社会統計学のように、人文科学や社会科学でも重要である。コンピュータ以前は、数値的な手法は数表と、大きな計算になると機械式計算機による補助も近代には使われたものの、紙とペンによる膨大な途中経過をダブルチェックして行われる大変な作業であった。(個々の計算はそろばんにより行われるかもしれないが、そろばんで「膨大な途中経過」は扱えない。計算尺も用途によっては有用だが、有効数字が限られており、それでは間に合わない分野も多い)コンピュータの発達以降は、従来から見るとその桁外れな計算力により応用分野が大きく広がったとともに、コンピュータ以前からのノウハウに加え、コンピュータによる計算の特性を正しく理解して使うことも重要になった。常微分方程式は天体(惑星、恒星、小宇宙)の軌道の計算に登場する。資産管理には最適化が利用されている。数値線型代数はデータ解析に不可欠である。確率微分方程式とマルコフ連鎖は、医学や生物学における生体細胞のシミュレーションの基本である。以下の記述では「精度」と「正確度」という用語があまり正しく使われていないかもしれない。まず正確度と精度の記事を確認すること。数値解析の目標は、難しい問題への近似解を与える技法の設計と解析である。この考え方を具体化するため、次のような問題と手法を挙げる。数値的手段による解析のための計算は、コンピュータの発明以前から多くの国々で行われていた。線型補間は2000年以上前から行われている。ニュートン法、ラグランジュ補間、ガウスの消去法、オイラー法などの名称からも分かるように、歴史上の偉大な数学者の多くが数値的手段による解析にも注力した。計算を能率化しまた計算の誤りをなるべく減らすために、公式や数表を掲載した印刷物である数表が作られた。例えば関数値を小数点以下16桁まで与える数表を使って、必要に応じて補間を行うことで、関数の精度の良い近似値を得ることができた。この分野での典型的な業績の例として、Abramowitz と Stegun の編集したNISTの書籍などが挙げられる(これは1000ページを超えるもので、典型的な公式,計算式、近似式や関数の数表やグラフなどを多数集めている。コンピュータが利用可能になった後には数表そのものは(関数値のルーチンを作る作業者が計算値の検証に使う場合を除いて)あまり役に立つ機会がなくなったが、公式,計算式、近似式が多く集められており,今日でも数値計算分野にとっては有用性がある)。機械式計算機やリレー式のデジタル計算機も計算のツールとして開発された。そのような計算機が1940年代に電子式のコンピュータへと進化した。デジタル式のコンピュータは数値の計算以外にも使える機材であるが、たとえばENIACの開発目標は、高速な数値計算を行うための機械の実現であった。その後はさらに複雑な計算がより高速に行えるようになっている。(計算機械にはデジタル式以外にもアナログ方式のものがある.例えば計算尺は一種のアナログ式の計算デバイスであるし,機械式や電気式、電子的のアナログ方式のコンピュータもデジタル方式のコンピュータが低価格となりごく当たり前になる以前には良く用いられていた.アナログ方式の弱点は,素子の物理的な特性から決まる誤差やノイズによりある程度以上の高精度な計算を行うことが困難であることや,動作を決めるためのプログラミングは機構や回路そのもので実現するので,ストアドプログラミング方式が実現容易なデジタル方式と違って変更が素早くできないので,用途が専用機械になりがちなことである.)直接解法は、問題の解を有限個のステップで計算する。その解は、演算精度が無限ならば正確である。例えば、線型方程式系を解くガウスの消去法やQR分解、線形計画問題のシンプレックス法などがある。実際には有限な浮動小数点数が使われるため、得られる解は近似値となる。これに対して反復解法は一定のステップ数で完了するとは限らない。ある初期予測値から開始して、反復的に計算を行って徐々に解に収束させていく。一般にこの場合、たとえ無限の精度で計算したとしても、有限回の反復では正確な解にたどり着くことはない。例として、ニュートン法、二分法、ヤコビ法などがある。数値線型代数の大規模な問題には、反復解法が一般に必要とされる。数値解析では、反復解法が直接解法よりも一般的である。いくつかの手法は基本的には直接解法だが、GMRES法 や共役勾配法などのように、反復解法として使うことも多い。これらの技法では厳密解を得るために必要なステップ数が大きくなるため、反復解法として近似解を利用する。さらに、連続問題を近似的に離散問題に変換して解くことも必要となる。この変換過程を「離散化(discretization)」という。例えば、微分方程式を解く場合が挙げられる。微分方程式を数値的に解くには、有限長のデータでなければならず、定義域が連続であっても、有限個の点を選んで値を計算する。誤差の研究は、数値解析の重要な一分野である。解に誤差が入り込む原因はいくつかある。全てのデジタルコンピュータのモデルである有限状態機械では、数値を有限の桁数で表現するためあらゆる実数を正確に表現するのは不可能であり、端数処理にともなう誤差が発生する。この誤差を丸め誤差という。この誤差は計算を倍精度で行うなど、コンピュータの計算精度を上げることによって減らすことができる。打ち切り誤差は、反復解法で本来は無限に繰り返す反復を中途で打ち切ったために発生する近似解と厳密解の差である。例えば右の欄にある formula_4 を解く問題で、10回程度の反復では、解は約 1.99 となる。このとき打ち切り誤差は 0.01 である。一般に反復回数をより多くとればこの誤差は減少する。多くの問題では基礎方程式は微分方程式である。連続量で表される微分方程式に離散化近似を行うと、元の式と異なる差分方程式が得られる。差分方程式はテイラー展開の高次微小量を無視して得られるため、その解も元の微分方程式の解と正確には一致しない。このように離散化によって発生する誤差を離散化誤差という。この誤差を減らすには、より高次の離散化方法をとる、計算点の個数をできるだけ多くするなどの方法がある。上述までの誤差は、与えられたモデルを「正しく」解いているか、という観点からの誤差であるが、その対立概念として、元の基礎方程式に関して、「正しい」式を解いているか、という問題がある。たとえば非線形現象を線形近似することなどがこれに相当する。これは数値解析というより、元の問題が属する科学分野の問題ではあるが、基礎方程式が誤っている(実現象のモデルとして不適切である)場合には上述の誤差を減らしても解が実現象を正しく表すとは限らないため、解の誤差評価をする際には必ず検討しなければならないことである。この検証過程では定式化や仮説における誤り、モデルの適用限界などに対する考察が必要になる。誤差が発生すると、計算を通じてそれが伝播していく。実際、電卓やコンピュータでの(浮動小数点数の)加算は正確ではなく、反復計算をすると計算はさらに不正確になっていく。このような誤差の研究から数値的安定性の概念が生まれた。あるアルゴリズムが数値的に安定であるとは、誤差が発生・伝播したときに計算が進むにつれてその誤差があまり大きくならないことを意味する。これは問題が良条件の場合のみ可能である。良条件とは、データが少しだけ変化したとき、解も少しだけ変化するような性質を持つことを意味する。逆に問題が悪条件であれば、データに含まれる誤差は大きく成長する。しかし、良条件の問題を解くアルゴリズムは必ずしも数値的に安定とは言えない。数値解析の技術は、良条件の問題を解く安定なアルゴリズムを見つけるためにある。例えば、2の平方根(約 1.41421)の計算は良条件問題である。この問題を解く多くのアルゴリズムは、初期近似値 "x" から開始して formula_1 になるべく近い値を求めようとする。つまり、"x"=1.4 として、よりよい近似値を "x"、"x"、…と計算していく。有名なアルゴリズムとしてバビロニアの平方根があり、この場合の式は "x" = "x"/2 + 1/"x" である。別の方法として、 たとえば、"x" = ("x"−2) + "x" という式を使うとする(仮に Method X とよんでおく)。この2つのアルゴリズムについて、"x" = 1.4 と "x" = 1.42 の場合の反復結果の一部を以下に示す。見ての通り、バビロニアの平方根は初期値がどうであっても素早く収束するが、Method X は初期値が1.4の時は収束が遅く、1.42を初期値にすると発散する。したがって、バビロニアの平方根は数値的に安定だが、Method X は数値的に不安定である。数値解析は、解こうとしている問題によっていくつかの分野に分かれる。最も単純な問題は、関数のある点での値を求めることである。単純に数式に値を代入する直接的な手法は、効率的でないこともある。多項式の場合、ホーナー法を使うことで乗算と加算の回数を減らすことができる。一般に、浮動小数点演算を使うことで生じる丸め誤差を予測して制御することが重要となる。補間が役立つのは、ある未知の関数のいくつかの点の値があるとき、それら以外の中間点でのその関数の値を求める場合である。単純な手法としては線型補間があり、既知の点の間で関数が線型に変化するとみなすものである。これを一般化した多項式補間はもっと正確となることが多いが、ルンゲ現象に悩まされることもある。その他の補間手法としてはスプラインやウェーブレットといった局所化関数を使うものがある。補外は補間とよく似ているが、未知の関数の値が判っている点の外側の点について値を求めることをいう。回帰も類似した手法だが、既存のデータが不正確であることを考慮する。いくつかの点とその値があり、それらデータが誤差を含みつつ何らかの関数に従っているとして、その未知の関数を決定する。このための手法として、最小二乗法がよく知られている。基本的な問題のひとつとして、与えられた方程式の解を計算する問題がある。その方程式が線型か否かによって手法が分類される。例えば、formula_6 は線型だが、formula_7 は線型ではない。線型方程式系を解く手法については研究が進んでいる。標準的な直接解法としては何らかの行列分解を使うものがあり、ガウスの消去法、LU分解、対称行列やエルミート行列に関するコレスキー分解、非正方行列に関するQR分解がある。反復解法としては、ヤコビ法、ガウス=ザイデル法、SOR法、共役勾配法があり、大規模な方程式系でよく使われる。非線型方程式には求根アルゴリズムが用いられる(根とは、関数がゼロとなる変数の値を意味する)。関数が可微分で導関数が分かっている場合には、ニュートン法が利用されることが多い。他にも線型化などの手法がある。固有値分解や特異値分解も重要な問題である。例えば、Spectral Image Compression は特異値分解に基づいたアルゴリズムである。これに対応した統計学上のツールを主成分分析という。例えば、World Wide Web上での話題トップ100を自動的に抽出し、各Webページをどの話題に属するか分類するといった作業で使われる。最適化問題は、与えられた関数が最大(または最小)になる点を問う問題である。多くの場合、解は何らかの制約条件を満たさなければならない。最適化問題はさらに、関数や制約の形式によっていくつかに分類される。例えば、線形計画問題は関数と制約が共に線型である場合を扱う。線形計画問題の主な解法として、シンプレックス法などを挙げることができる。ラグランジュの未定乗数法は、制約条件のある最適化問題を制約のない問題に変換するために用いられる。数値積分(数値的求積法)は、定積分の値を求めるものである。一般的手法としては、ニュートン・コーツの公式を使った手法(中点法やシンプソンの公式)やガウスの求積法などがある。これらは分割統治戦略に基づくもので、大きな集合についての積分を小さな集合の積分に分割して値を求める。高次元になるとこれらの手法は計算の手間が膨大となるため、モンテカルロ法などの手法が使われる。数値解析では、微分方程式(常微分方程式や偏微分方程式)を(近似的に)解く問題も扱う。偏微分方程式を解くには、まず方程式を離散化し、有限次元の部分空間で計算を行う。そのような手法として、有限要素法、差分法、特に工学分野で使われる有限体積法などを挙げることができる。これらの手法は関数解析学の定理などに基づいている。これによって、問題を代数方程式の求根に還元することができる。20世紀後半以降、多くのアルゴリズムはコンピュータ上で実装され、実行されてきた。Netlib には数値解析用の各種ルーチンのソースコードがあり、その多くはFORTRANとC言語で書かれている。各種の数値解析アルゴリズムを実装した商用ライブラリ製品としては IMSL や NAG などがある。フリーな(ソースコードが公開され,利用や改変の自由度が高い)ものの例としては GNU Scientific Library を挙げることができる。MATLABは行列計算を中心とする数値計算用の商用プログラミング言語として有名だが、他にも商用ではSAS、SPSS、 S-PLUS 、 IDL などがある。フリーソフトとして、「MATLAB」と互換性の高い Scilab・GNU Octave・FreeMat、「S言語」や「S-PLUS」の言語仕様に準じるR言語、SPSS の代替を目指す PSPP や gretl、そのほかIT++(C++ライブラリ)、Pythonの派生品 (SciPy、NumPy) など、様々な数値解析ソフトウェアが使われている。性能も様々で、ベクトルや行列の演算は一般に高速だが、スカラーのループは10倍以上の差があるものもある。Mathematica や Maple のような数式処理システムの多くは数値計算に使うこともできる。Sage は数値計算と数式処理計算の両方を備えた統合システムである。また、簡単な問題ならば表計算ソフトでも取り扱えることがある。狭義では数値解析と数値計算は異なるが、両者を区別をしないことにする。(構築中:より充実したリストを目指す予定)なるべく発行年代順に並べる。なるべく発行年代順に並べる。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。