LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

共形場理論

共形場理論(きょうけいばりろん、Conformal Field Theory, CFT)とは、共形変換に対して作用が不変な場の理論である。特に、1+1次元系では複素平面をはじめとするリーマン面上での理論として記述される。共形変換に対する不変性はWard-Takahashi恒等式を要請し、これをもとにエネルギー-運動量テンソル(あるいはストレステンソル)に関する保存量が導出される。また1+1次元系においては、エネルギー-運動量テンソルを展開したものは、Virasoro代数と呼ばれる無限次元リー代数をなし、理論の中心的役割を果たす。共形変換群は、時空間の対称性であるポアンカレ群の自然な拡張になっており、空間d-1次元+時間1次元のd次元時空間ではリー群SO(d,2)で記述される。この変換群の生成子は(d+2)(d+1)/2個あり、その内訳は以下のとおり。※以上が、部分群としてのポアンカレ群の生成子をなす。スケール普遍性は定義より以下の変換(ディラテーション)を示唆する。さらに強く、共形不変性を要求するとが加わる。この代数SO(d,2)を共形代数(conformal algebra)と呼ぶ。場の理論の基本的な可観測量である相関関数(場の演算子の積の真空期待値)は共形代数によって強い制限を受ける。特にユニタリな共形場の理論においては、例えばスカラー演算子の二点関数はformula_1と定まってしまう。ここで、formula_2は演算子formula_3 のスケーリング次元と呼ばれる(理論依存の)パラメータである。2次元共形場理論は歴史的には1984年にBelavin、ポリャコフ、Zamolodchikov(BPZ)によって初めて定式化された。2次元共形場理論で言及するのは次のような場合である。一般に(2+1次元以上の時空では)共形変換群は有限個の生成子からなる有限次元リー群である。しかし、空間1次元+時間1次元(d=2)の2次元共形場理論場合に限り、共形変換群SO(2,2)は正則関数の等角写像の変換群(無限次元リー群)に拡張される。この場合共形変換群SO(2,2)は無限個の生成子からなる代数(Virasoro 代数)の部分代数となる。Virasoro代数から得られるヒルベルト空間に対する制限は強力であり、ミニマル模型と呼ばれる模型群に対しては、(これには臨界点上の2次元イジング模型も含まれる)全ての相関関数の振る舞いをVirasoro代数とWard-Takahasi恒等式から厳密に求めることができる(可解である)。可解である2次元共形場理論は、2次元統計系あるいは1+1次元量子系を理解する上で強力な武器となっている。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。