オブジェクト指向プログラミング(オブジェクトしこうプログラミング、)とは、相互にメッセージ () を送りあうオブジェクト () の集まりとしてプログラムを構成する技法である。この技法をサポートするプログラミング言語はオブジェクト指向プログラミング言語 () と呼ばれる。オブジェクト指向プログラミングには必ずしもオブジェクト指向プログラミング言語を用いる必要は無いが、オブジェクト指向プログラミング言語の備えるクラスとその継承などの仕組みを利用するほうが格段に開発効率は向上する。オブジェクト指向プログラミングとは、オブジェクトと呼ばれる機能の部品でソフトウェアを構成させるものであり、一般的に以下の機能や特徴を活用したプログラミング技法のことをいう。この機能を文法的に提供するプログラミング言語は、オブジェクト指向プログラミング言語 () と呼ばれる。これらの機能のうち、 そのため、オブジェクト指向プログラミング言語の中には、カプセル化以外の機能については一部を提供していないものもある。ただし、カプセル化(可視性の定義)やポリモフィズムとダイナミックバインディングはオブジェクト指向言語に固有の概念というわけではなく、非オブジェクト指向言語の中にもこの性質を備えるものもある。オブジェクト指向プログラミングという考え方が生まれた背景には、計算機の性能向上によって従来より大規模なソフトウェアが書かれるようになってきたということが挙げられる。大規模なソフトウェアが書かれコードも複雑化してゆくにつれ、ソフトウェア開発コストが上昇し、1960年代には「ソフトウェア危機 ()」といったようなことも危惧されるようになってきた。そこでソフトウェアの再利用、部品化といったようなことを意識した仕組みの開発や、ソフトウェア開発工程の体系化(ソフトウェア工学 () の誕生)などが行われるようになった。このような流れの中で、プログラムを構成するコードとデータのうちコードについては手続きや関数といった仕組みを基礎に整理され、その構成単位をブラックボックスとすることで再利用性を向上し、部品化を推進する仕組みが提唱され構造化プログラミング () として1967年にエドガー・ダイクストラ () らによってまとめあげられた(プログラミング言語の例としてはPascal 1971年)。しかしデータについては相変わらず主記憶上の記憶場所に置かれている限られた種類の基本データ型の値という比較的低レベルの抽象化から抜け出せなかった。これはコードはそれ自身で意味的なまとまりを持つがデータはそれを処理するコードと組み合わせないと十分に意味が表現できないという性質があるためであった。そこでデータを構造化し、ブラックボックス化するために考え出されたのが、データ形式の定義とそれを処理する手続きや関数をまとめて一個の構成単位とするという考え方でモジュール () と呼ばれる概念である(プログラミング言語の例としてはModula-2 1979年)。しかし定義とプログラム内の実体が一対一に対応する手続きや関数とは異なり、データはその形式の定義に対して値となる実体(インスタンスと呼ばれる)が複数存在し、各々様々な寿命を持つのが通例であるため、そのような複数の実体をうまく管理する枠組みも必要であることがわかってきた。そこで単なるモジュールではなく、それらのインスタンスを整理して管理する仕組み(例えばクラスとその継承など)まで考慮して生まれたのがオブジェクトという概念である(プログラミング言語の例としてはSimula 1962年)Simulaのオブジェクトとクラスというアイデアは異なる二つの概念に継承される。一つはシステム全てをオブジェクトの集合と捉え、オブジェクトの相互作用をメッセージに喩えた「オブジェクト指向」である。オブジェクト間の相互作用をメッセージの送受と捉えることで、オブジェクトは受信したメッセージに見合った手続き単位(≒関数)を自身で起動すると考える。結果オブジェクトは自身の持つ手続きのカプセル化を行うことができ、メッセージが同じでもレシーバオブジェクトによって行われる手続きは異なる――多相性(ポリモーフィズム)を実現した(このメッセージを受け実行される手続き単位は、メッセージで依頼されたことを行うための「手法」の意味でメソッドと呼ばれる)。この思想に基づき作られたのがSmalltalk(1972年)であり、オブジェクト指向という言葉はこのとき作られた。一方、Smalltalkとは別にSimulaの影響を受け作られたC++(1979年)は抽象データ型のスーパーセットとしてのクラス、オブジェクトに注目し、オブジェクト指向をカプセル化、継承、多相性をサポートするものと再定義した(その際、実行時速度重視及びコンパイラ設計上の制約により、変数メタファである動的束縛の特徴は除外された)。これらは当初抽象データ型、派生、仮想関数と呼ばれ、オブジェクトのメンバ関数を実体ではなくポインタとすることで、継承関係にあるクラスのメンバ関数のオーバーライド(上書き)を可能にしたことで、多相性を実現した(この流儀ではメッセージメタファはオブジェクト指向に必須ではないものと定義し、オブジェクトの持つ手続きをメソッドとは呼ばずメンバ関数と呼ぶ)。この他、Smalltalkにある動的束縛の類似的な機能としてオーバーロード(多重定義)が実装されている。Smalltalkはこの「全てをオブジェクトとその相互作用で表現する」というデザインに立ち設計されたため、全てをファイルと捉えるファイル指向オペレーティングシステムからの脱却と、プログラムをフロー制御された手続きと捉える手続き型言語からの脱却が行われた。そのためSmalltalkは自身がオブジェクト指向オペレーティングシステムでもあること、メッセージ式のみで構成される文法などの特徴を持った。これは当時のプログラム言語としては特異的であり、ガベージコレクタを必要としインタプリタ形式で実行される処理の重さも手伝って先進的ではありながら普及しがたいものであると捉えられた。また、メッセージでの多相性は、変数へのオブジェクトの動的束縛が前提となるため、静的型チェックが必要な実行時性能重視のコンパイラ言語にとって、実装から除外すべき特徴となった。C++の創始者は、Smalltalkのような論理美の追求よりも、現用としての実用性を重視した。そのため、C++の再定義した「オブジェクト指向」はこれらの問題を全てクリアにし、既存言語の拡張としてオブジェクト指向機能を実装できることでブレイクスルーを迎え急速に普及する。これによりメッセージ送信という考え方はやや軽視されるようになり、オブジェクト指向とはC++の再定義したものと広く認知されるようになった。1980年代後半に次々と生まれたオブジェクト指向分析・設計論は、Smalltalkを源流とするオブジェクト指向を基に組み立てられた。このときSmalltalkは健在であったが広く普及しているとは言えずC++で実装する機会が多かったが、C++はSmalltalkとは思想的にやや異なることと、C++がマルチパラダイム言語として設計されたことに起因する文法の複雑さが問題とされた。このニーズを受けC++の提示した現実解と、Smalltalk的理想論を融合するものとして、文法面ではシンプル化しながらも強くC++の影響を受けつつ、一方で用語や思想面でSmalltalk色を濃くしたJava(1991年)が作られた。バランス感覚に長けたJavaの登場によってオブジェクト指向開発に必要な要素が全てそろい、1990年代後半からオブジェクト指向は広く普及するようになった。2007年現在、今後のオブジェクト指向プログラミングの流れとしてオブジェクト指向を補完するエージェント指向やアスペクト指向といった方法論や、Ruby、Python、Groovyといった動的言語()の認知度が上がり、普及への萌芽が見られる。オブジェクト指向プログラミングをサポートする機能を備える代表的なプログラミング言語(オブジェクト指向プログラミング言語)としては以下のようなものが挙げられる:また、これらは次の2つに分類できる。これらの言語では、クラスの定義、インスタンスの生成、オブジェクト間の通信を構文または専用の関数などでサポートしている。オブジェクト指向プログラミング言語では、継承の利用とあいまってオブジェクトへの参照やポインタが多用される。そのため、オブジェクトのメモリへの割り当てに関して、自動ガベージコレクション機能を備えているものが多い。ただし、すべての言語が備えているわけではない。例えば、C++はガベージコレクションを備えていない。また、言語ではないが、GObjectというライブラリがある。これを使用すれば、C言語をオブジェクト指向に拡張することができ、C言語でもオブジェクト指向プログラミングが可能となる。オブジェクト指向は従来の技法と比べよりプログラムを抽象的に扱える性質を持つことから、システムや機能、大まかなデータなどを扱う抽象的な上流設計にも応用されるようになった。結果、抽象的なオブジェクト指向の応用例として以下の技法やノウハウが生まれた。現在ではオブジェクト指向という言葉は、これらオブジェクトを中心とした枠組みを用いる総称として使われており、プログラミング技法としてのオブジェクト指向はオブジェクト指向プログラミングという名で区別されるようになっている。オブジェクト指向プログラミング言語は、相互にメッセージを送りあうオブジェクトの集まりとしてプログラムを構成することができる仕組みを持つ。そのために、少なくともオブジェクトについての3つの仕組みと、オブジェクトの管理についての3つの仕組みが必要となる。これらをどのように言語の要素として提供し、どのような機械語コードで実現するかによって様々なオブジェクト指向プログラミング言語のバリエーションが生まれる。以下、オブジェクト指向プログラミング言語が提供する様々な要素が上記の仕組みをどのように実現しているかについて概観する。オブジェクト () はオブジェクト指向プログラミングの中心となる概念であり、この概念を実際にどう実現するかはオブジェクト指向プログラミング言語により異なる。以下、概念と実際がどう対応しているかについて説明する。実際のプログラムでは、全てのオブジェクトが互いに全く異なった存在ではなくオブジェクトは種類に分けることが出来る。例えば勤怠管理のシステムであれば、氏名や年齢、累積勤務時間などのデータは異なっても社員は皆、出勤し退勤するという処理(振る舞い)は同じだろう。このように複数の異なるオブジェクトが同じ種類のメッセージを受け取り共通の処理をするのが普通である。このような場合、各オブジェクトがそれぞれメッセージ処理のコード(前述の「振る舞い」に当たる)を独自に備えていては無駄である。そこでオブジェクト指向プログラミング言語がオブジェクトを実現する際には多くの場合、内部的にはオブジェクトを2つの部分に分けている。一つは同一種類のオブジェクトに共有される部分、例えばメッセージ処理のコード(振る舞い)や定数(どのオブジェクトでも異ならないデータ)の類である。もう一つは同一種類のオブジェクトでもそれぞれ異なる部分、典型的には各オブジェクトが保持するデータ群である。そしてあるオブジェクトOにメッセージを配送し適切なメッセージ処理コード(振る舞い)を呼び出す際には、まず対象となるオブジェクトOについて共通部分の格納場所を見つけて適切なコードを選び出し、次にそのコードに対して処理対象となるオブジェクトO固有のデータの所在を示すオブジェクトIDを渡すようになっている。各オブジェクトの固有データを識別するオブジェクトIDを表現する方法も様々で、オブジェクトのIDとしては名前、番号なども用いられることがあるが、オブジェクトの固有データを記憶している主記憶上のアドレスがそのまま用いられることもある。アドレスを直接利用することは非常に実行効率の向上に寄与するが、プログラム間でのオブジェクトの受け渡し、セッション間(プログラムが終了して再度起動された時など)でのオブジェクトの受け渡しにはそのまま利用することができない。また各オブジェクトの固有データから共通部分の格納場所を見つける方法もまた各言語により異なり、その言語の開発目的に応じて実に多種多様である。例えばJavaScriptの場合、各オブジェクトは連想配列であり、名前で表現されたメッセージのIDからメッセージ処理コードである関数への参照を直接見つけ出す。各オブジェクトの固有データもその連想配列に格納されていて、メッセージを処理する関数には連想配列のアドレスが渡される。Selfのようなインスタンスベースのオブジェクト指向プログラミング言語では、プロトタイプとなるオブジェクトがメッセージを処理するコードも保持しており、オブジェクトがクローンされて作成されるときにそのプロトタイプのありかを示す情報もコピーされ、メッセージは受け取ったオブジェクトのIDを添えてプロトタイプに送られて処理される(Selfでは実行効率上の問題から後に内部的にクラスを作って利用するようになっている)。最も普及しているクラスベースの言語では、共通部分はオブジェクトの種類を表現するクラスに保持され、各オブジェクトは固有データと共にそのクラスのIDを保持する。そしてオブジェクトに送られるメッセージはその送り先オブジェクトにあるクラスのIDからクラスを見つけ、その中からメッセージを処理するコードを見つけ出し、処理対象となっているオブジェクトのIDを付してそのコードを呼び出す仕組みになっている。メッセージ () はオブジェクト間の通信でやりとりされる情報である。メッセージはメッセージ種別を示すIDとメッセージの種別に応じた追加の情報からなる定まった形式を持つ。追加の情報はそれ自身が何らかのオブジェクトやオブジェクトのIDである場合もある。メッセージの配送には大別して2つの方式がある:両者とも一長一短がありどちらがすぐれているとは言えない。また並列・並行処理が可能な環境では一方の仕組みがあれば、それを利用してもう一方も実現可能である。一般的な傾向としては、メッセージの伝送や処理に時間が掛かる場合は非同期式の方が効率は良く、そうでない場合には同期式の方が挙動が分かりやすく利用しやすい。並列処理・並行処理システムを記述する言語や分散システムを記述する言語ではOSなどが提供するメッセージ機能や自前の配送メカニズムを使って非同期式でメッセージが配送される場合もあるが、一般にオブジェクト指向プログラミング言語ではその多くが同一のプログラム内の通信であるので同期式のメッセージ配送が利用される。特にコンパイルされるタイプのオブジェクト指向プログラミング言語では、しばしば特別なメッセージ配送の仕組みを用意せず、特別な形式の関数の呼び出しでメッセージの配送を直接に表現する。即ち、各メソッドを内部的には関数として実現し、メッセージIDはメソッド名で表し、関数の第一引数としてオブジェクトIDを渡し(この第一引数は多くの言語で特別な記法で表される)、追加の引数としてメッセージの追加部分の情報を渡すのである。こうするとメッセージ送信は直接的なメソッドの関数呼び出しとして表せる。ただし、プログラムで継承の仕組みが利用されている場合はプログラムのテキストからだけでは呼び出すべきメソッドが決定できない場合があるので、実行時にメソッドを決定するためにメソッド・サーチや仮想関数テーブルといった仕組みが必要となる。多くのプログラミング言語においてメッセージは、メソッド呼び出しの比喩でしかないことが多い。SmalltalkやObjective-Cの様な言語では、メッセージはメソッド呼び出しとは独立した機構として存在している。メッセージが機構として存在する言語では、メッセージをオブジェクトに送信した際、宛先のオブジェクトにメッセージで指定したメソッドが存在しない場合でもメッセージを処理することが出来る。これを利用し、メッセージの配送先を別のオブジェクトに指定したり、メッセージを一時保存したり、不要なメッセージを無視する等といったメッセージ処理が行われる。クラス (class) は大多数のオブジェクト指向プログラミング言語で提供されている仕組みであり、上記の機能の殆ど全てに関わりがある。概念的にはクラスはオブジェクトの種類を表す。このためオブジェクトはクラスに属するという言い方をする。あるクラスに属するオブジェクトのことをそのクラスのインスタンス (instance) と呼ぶ。データ型の理論から見た場合クラスは型を定義する手段の一つである。クラスによってオブジェクトを記述する言語をクラスベース () のオブジェクト指向プログラミング言語と呼ぶ。ハイブリッド型オブジェクト指向プログラミング言語では在来のレコード型(Cでは構造体)の構文を拡張してクラスの定義を行うようにしたものが多い。多くのオブジェクト指向プログラミング言語ではクラスをデータメンバとメソッドの集まりとして記述する。平たく言えばデータ・メンバの集まりはオブジェクトが保持するデータの形式を定め、各メソッドはそれぞれオブジェクトが処理する特定のメッセージの処理方法を定める。しばしばデータ・メンバとメソッドには個別にアクセス権が設定できるようになっていて、そのクラスに属するオブジェクトが内部的に利用するものと他のクラスに属するオブジェクトに公開するものを分類できるようになっている。多くの場合、公開されたメソッドの集まりは全体として処理可能なメッセージのカタログの機能、即ちインタフェースを提供する。各言語によって異なるが特定の名前のメソッドを定めて、オブジェクトの生成や初期化時の処理、廃棄時の処理などを記述できるようにすることも多い。多くの言語でクラスは言語の要素として直接実現されているが、これは実行効率のためであり、そのように実現することが必須というわけではない。実際、各クラスをそれぞれオブジェクトとして提供する言語も存在する(例:Smalltalk)。このような言語ではある種のリフレクション (reflection) が可能となる。即ち必要があればプログラムで実行時にクラスの動作を変更することが可能である。これは非常に大きな柔軟性を提供するが、言語処理系による最適化が難しいため実行効率は低下することが多い。近年では柔軟性と効率性を両立させるために基本的に言語要素としてクラスを提供した上で、リフレクション機能が必要なプログラムに対しては必要に応じて各クラスに対応するクラス・オブジェクトをプログラムが獲得できるようにしている言語が現れてきている。(例:JavaのリフレクションAPI)クラスは非常に多くのオブジェクト指向プログラミング言語で提供されている機能ではあるが、オブジェクト指向プログラミング言語に必須の機能というわけではない。実際にオブジェクトの管理や、データ・メンバやメソッドの記述、継承に際してクラスという仕組みに依存せずに、もしくはクラスという仕組み自体を持たずに別の手段でこれらを実現している言語も存在する。このような言語をインスタンスベース (')、オブジェクトベース ("object-based") あるいはプロトタイプベース (') のオブジェクト指向プログラミング言語と呼ぶ。インスタンスベースまたはそれに類するのオブジェクト指向プログラミング言語には以下のようなものがある:なお、クラスベースの言語とインスタンス・ベースの言語との間には明確な境界線はない。たとえば、インスタンス・ベースの代表格ともいえる Self には、traits と呼ばれるクラスのような仕組みが追加されているし、JavaScript、NewtonScript に至っては traits 類似の仕組みを「クラス」と呼称している。また逆に、クラスベースの言語でもクローンを行うメソッドを備え、委譲の仕組みを記述すればある程度はインスタンス・ベースのスタイルでプログラムを記述できる。インスタンス・ベースの言語ではオブジェクトの生成は既存のオブジェクト、特にプロトタイプ(、原型)と呼ばれるオブジェクトからのクローンによって行われる。当然、一群のクローンはその親、ひいてはプロトタイプと同一の種類のオブジェクトと見なされる。メソッドはプロトタイプ・オブジェクトに属し、メッセージは委譲によってそのオブジェクトが覚えているコピー元へ向かってプロトタイプまで順にメッセージが中継されてから処理される。新しい種類のオブジェクトが必要な場合は適当なオブジェクトをクローンした後で必要なデータ・メンバやメソッドを追加あるいは削除し新たなプロトタイプとすることで行われる。追加されたのでないメソッドに対応するメッセージについてはコピー元のオブジェクトに処理を委譲する。クラスベースの言語との関係について考えてみると、クローンはプロトタイプと同一の「クラス」に属すると見なし、データ・メンバやメソッドが追加・削除されてあらたなプロトタイプが作られると別の「クラス」が内部的に生成されると考えることができる。ここでデータ・メンバやメソッドの追加のみを許して削除を許さないよう制限すればクローンの「クラス」がその親の「クラス」を継承した場合と同等になる。このためメッセージが委譲の連鎖をたどって配送されるという効率上の問題を無視すれば理論上、インスタンス・ベースの言語の記述能力はクラス・ベースの言語を包含していると言える。ただ、インスタンス・ベースの言語でも実行効率上の問題からなんらかのクラスに似た仕組みを備えている場合が多い。データメンバ () は、他のオブジェクトに対する参照やポインタであるか、他のオブジェクトそのものである。参照かポインタである場合にはそのデータメンバの参照するのはデータメンバが記述されているクラスそのもののインスタンスに対する参照であっても良い。一般にデータメンバはインスタンスデータメンバ(インスタンスフィールド)とクラスデータメンバ(静的変数)の2種類に大別できる。効率上の観点から言語が提供する基本オブジェクトの定数を表すデータメンバは特別扱いされる。そのような定数を表すデータメンバを特に定数データメンバ () と呼ぶ。データメンバはC++などの言語ではメンバ変数 ()、Javaなどではフィールドと呼ばれることがあり、UMLでは属性と呼ばれる。インスタンスデータメンバ(一般に単にデータメンバと言われる場合はこちら)はそのクラスのインスタンス各々に保持される。インスタンスデータメンバの集まりはそのクラスのインスタンスが保持するデータの形式を定める。インスタンスデータメンバは単にデータメンバと呼ばれることも多い。Smalltalkではインスタンス変数 () と呼ばれる。クラスデータメンバはそのクラスオブジェクトとインスタンスオブジェクトの間で共有されるデータである。Smalltalkではクラスデータメンバはクラス変数 () と呼ばれる。また、C++・Javaでは歴史的事情によりクラスデータメンバは静的データメンバ ()、静的変数 (static variable)、静的フィールド () と呼ばれる。ただし、Smalltalkのクラス変数はC++やJavaのクラス変数とは異なる。Smalltalkにおいて、C++やJavaのクラス変数と同等となる変数はプール辞書 () と呼ばれる。動的型付けを採用するオブジェクト指向言語の多くは、クラスより生成するインスタンスの他にメタクラスという機能を持ちクラス自体をオブジェクトとして扱うことが出来る。このためオブジェクトには、インスタンスオブジェクトとクラスオブジェクトという2種類のオブジェクトが存在する。Java等クラスオブジェクトを持たない言語の文化圏では、インスタンスオブジェクトとオブジェクトを混同して説明される事があるが、Objective-CやPython、Ruby等、インスタンスオブジェクトとクラスオブジェクトが別であるオブジェクト指向言語では区別して説明される。元々はSmalltalkから始まった用語である。メソッド () は特定の種類のメッセージの処理方法を記述したものである。メソッドもインスタンス・メソッドとクラス・メソッドの2種にできる。インスタンス・メソッドはそのクラスの各インスタンスオブジェクトを操作し、クラス・メソッドはクラスオブジェクトを操作する。メソッドとの集まりはそのクラスのオブジェクトが処理可能なメッセージのカタログの機能を果たす。C++ではメソッドはメンバ関数 () や関数メンバ (function member) と呼ばれる。これはC++がグローバル関数との区別をつけることと、クラスを抽象データ型の拡張と位置づけ、非メッセージメタファな言語思想を持っている為である。これら言語ではメソッドをオブジェクト(=クラスやインスタンス)の持ち物として捉えず、クラスに定義された機能要素であると考える。メッセージメタファを否定するため、同時にメッセージを実行するメソッド(手法)ではありえない。クラス・メソッドだが、オブジェクト指向の本義に立ち返れば、クラス・メソッドがあるということはクラスがメッセージをレシーブできるという事になる。クラスがメソッドを持つことは便利だが、クラスをオブジェクトとすると実行効率に劣るため、双方の利点を享受できるこのような折中的仕様を取る言語は多い。C++ではクラスはオブジェクトでは無いが、一方でクラスに属するメソッドは存在する。Eiffelではクラスはオブジェクトでは無いためクラスのメソッドであるクラス・メソッドは存在しない。Smalltalkではクラスもオブジェクトの一種であるため当然クラスはメソッドをもつ。クラス・メソッドは、C++では静的メンバ関数 () と呼ばれる。これはクラスがオブジェクトでない言語にとってはクラス・メソッドより正確な表現であり適切である。("static" とはCのstatic変数に由来しauto変数の対語である。関数コールによりスタック上に生成される関数インスタンスに依存しない変数と、インスタンス生成有無にかかわらず実行できる関数の類似による。)Javaではクラス・メソッドは静的メソッド () とも呼ばれることもある。言語によっては特定の名前のインスタンス・メソッドやクラス・メソッドにオブジェクトの生成、初期化、複製、廃棄といった機能を固定的に割り当てている。初期化に利用されるメソッドをコンストラクタあるいは構築子 ()、廃棄時に利用されるメソッドをデストラクタあるいは消滅子 () と呼んで特別に扱うことが多い。構築子が純粋に初期化だけを担う場合はイニシャライザあるいは初期化子 () と呼ばれることもある。Javaでは消滅子をファイナライザ () と呼び、メソッドがその役割を果たす。ただし、Javaにおけるファイナライザは本当に必要でない限り使用するべきではなく、C++などのデストラクタとは違った意味を持つ。データ型の理論においては保持されるデータが必ずその型で認められる正しい値の範囲に収まることを保証するため、生成されるオブジェクトのデータ・メンバが必ず適切な構築子によって初期化されるように求める。またオブジェクトが入出力機器やファイルや通信、プロセスやスレッド、ウィンドウとウィジェットなどハードウェアやオペレーティングシステム (OS) が提供する資源を管理するために利用される場合に、構築子や消滅子でそれらの資源の使用開始(オープン処理)や使用終了(クローズ処理)をそれぞれ管理し、通常のメソッドでそれらにまつわる各種サービスを提供するようにすることで、それらのリソースがあたかもプログラム中のオブジェクトであるかのように自然に取り扱うことができるようになる。C++とJavaの場合、各クラスの名前がコンストラクタの名前として使用される。C++では一部のコンストラクタは型変換演算子として、また暗黙の型変換にも利用される。オブジェクト指向プログラミングにおいて、オブジェクトは、カプセル化されておりブラックボックスである。したがって、処理するメッセージのカタログ、つまりインターフェースだけが利用者に公開され、内部の詳細は隠されるのが基本である。しかし、あるクラスのインスタンスの内部だけで利用されるメソッドまで公開してしまうと、利用者にとって煩雑である。また、定数データ・メンバのようなものは一々メソッドでアクセスするようにせず公開してしまっても、カプセル化の利点は失われず効率的でもある。そこで、オブジェクトを定義するプログラマが各データ・メンバやメソッドについて公開・非公開を設定できる機能を用意している言語は多い。例えば、Javaでは、データ・メンバやメソッドの宣言にpublicと指定すれば、他オブジェクトから自由に利用でき(公開と呼ばれる)、privateと指定すればオブジェクト内だけで利用できるようになる(非公開と呼ばれる)。しかし、ある機能を提供するのに、一個ではなく一群のクラスに属するオブジェクトでそれを記述するのが相応しい事例がある。そのような場合、関係する一群のオブジェクト間でだけデータ・メンバやメソッドを利用できれば便利である。それを可能にするための拡張がいくつか存在する。例えば、継承を利用しているときに、あるクラスが子孫にだけ利用を許可したいデータ・メンバやメソッドがある場合、Javaではprotectedを指定することでそれを実現できる(限定公開と呼ばれる)。また、ある一群の機能を実現するクラスのライブラリで、その実現に関連するクラスに属するオブジェクトだけがデータ・メンバやメソッド利用できるようにしたい場合も考えられる。また、Javaでは、ライブラリを構成するクラス群を表現するパッケージ () という仕組みがあり、特に指定がない場合は同一パッケージに属するクラスのオブジェクト間でのみデータ・メンバやメソッドを相互に利用可能である。その他にも、デザインパターンの一つであるFacade パターンでは、この仕組みがテクニックとして応用されている。また、C++ではフレンド宣言という仕組みがあり、あるクラスで外部非公開に指定されているデータ・メンバやメソッドについて、その利用を許可するクラスや関数のリストをクラス内に列挙することができる。なお、public、private、protectedというキーワードは、多くのプログラミング言語で用いられているが、その示す意味は言語ごとに差異があるため、注意が必要である。コンポジションは、複数のオブジェクトがある一つのオブジェクトの構成要素となっている巨大なオブジェクト群をいう。コンポジションのもとにあるオブジェクトは同一の生存期間を持ち、一つの巨大な仮想オブジェクトの構成部品として機能する。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。