抽象代数学における局所環(きょくしょかん、local ring)は、1938年にヴォルフガンク・クルルによって導入された概念で、比較的簡単な構造を持つ環であり、代数多様体や可微分多様体上で定義される関数の、あるいは代数体を座や素点上の関数として見るときの「局所的な振る舞い」を記述すると考えられるものである。局所環およびその上の加群について研究する可換環論の一分野を局所環論と呼ぶ。環 "R" が局所環であるとは、以下に挙げる同値な条件を一つ(したがって全て)満たすもののことである:これらの性質が成り立つとき、唯一の極大左イデアルは唯一の極大右イデアルに一致し、またジャコブソン根基 (Jacobson radical) にも一致する。上記 3 番目の性質は局所環の非可逆元全体が真のイデアルをなし、したがってジャコブソン根基に含まれることを言っている。4 番目の性質は次のように言い換えることができる: "R" が局所環となる必要十分条件は、"R" に互いに素な二つの真の左イデアルが存在しないことである。ここで "R" の二つのイデアル "I
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。