双子素数(ふたごそすう、twin prime)とは、差が 2 である2つの素数の組のことである。組 を除くと、双子素数は最も近い素数の組である。双子素数を小さい順に並べた列はである。素数が無数に存在することは古代ギリシアでほぼ分かっており、ユークリッドの『原論』に証明がある。これに対し、双子素数は無数に存在するかという問題、いわゆる「双子素数の予想」や「双子素数の問題」は、いまだに数学上の未解決問題である。無数に存在するだろう、とは、多くの数論学者が予想している。双子素数問題そのものについては、古代ギリシア時代から知られていたとの記述あるいは示唆が多く見られるが、何らの確証も存在しない。文献の上で確認できるものは、A. de Polignac (1849) の言明である。彼は双子素数予想を一般化して任意の偶数を与え、それを差とする素数の組が無数にあるか、という問題を提出している。上からの評価式など部分的な結果があるが、その中でも漸近公式の予想は注目に値する。双子素数の組の数の漸近公式はハーディ・リトルウッド予想の一部であり、これは素数定理と似通った次のような双子素数の漸近的な分布公式を予想している。この定数 は「ハーディ・リトルウッド定数」の一つである。この問題は、特に2素数の場合のゴールドバッハの予想に密接に関係しており、篩法などの研究者によって双方の研究が同時に進められてきた。2004年5月に、「双子素数が無数に存在することの証明」と題された論文が Richard Arenstorf によって提出され、上記のハーディ・リトルウッドの予想は正しいと主張したが、内容に重大な誤りがあるとして著者自身によって撤回された。現在で知られている最大の双子素数は、388,342 桁の である。これは、2016年9月に分散コンピューティングプロジェクトの一つである PrimeGrid により発見された。(双子素数の逆数の和)は収束する (Brun, 1919)。この和 () をブルン定数と呼ぶ。素数の逆数の和は発散するので、素数の中で双子素数は、さほど多くはないといえる。また、すべての偶数は、高々9個の素数の積で現される2つの整数の差として無限通りに表すことができることもヴィーゴ・ブルンは示している (Brun, 1920)。これらの結果は篩法によるもので、篩法の最初の本格的な成果であると同時に、双子素数に関する最初の理論的な結果であり、双子素数に関する研究の出発点となった。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。