ひずみ()は、連続体力学における物体の変形状態を表す尺度であり、物体の基準(初期)状態の単位長さあたりに物体内の物質点がどれだけ変位するかを示す。物体の一般的な変形は、変形後の物質点の位置x が基準位置X の関数であるとしてx = F (X ) で表される。この変形に対して、例えば、ひずみは以下のように定義される。したがって、ひずみは無次元の物理量である。ひずみは、変形がどの程度与えられたかを表している。ひずみは応力と同様に、垂直成分とせん断成分に分解することができる。物体において、部材軸方向に沿った変形を表すのが垂直ひずみ、部材軸と垂直な方向の変形を表すのがせん断ひずみである 。物体の長さが増加している場合、垂直ひずみは引張ひずみと呼ばれるが、逆に減少している場合、圧縮ひずみと呼ばれる。ひずみの大きさに応じて、変形の解析は3つの理論に分類される。それぞれの理論において、ひずみの定義が異なっている。工学ひずみは微小変形の場合に用いられ、機械工学や構造力学などで利用される材料に適用されている最も一般的な定義である。一方、エラストマーやポリマーなど、工学ひずみが1%を超えるような大きな変形を条件とする材料においては、ストレッチや対数ひずみ、グリーンひずみ、アルマンジひずみといった、より複雑なひずみの定義が必要となる。フックの法則に従う等方性材料は、垂直応力により垂直ひずみが生じる。面積が "dx" × "dy" の2次元微小矩形材料要素を考える。これは変形後にひし形になる。図より、変位勾配が微小であることを仮定すると、導関数の2乗の項は無視できる。矩形要素のx軸方向垂直ひずみは、以下の式で定義される。同様に、y軸方向、z軸方向の垂直ひずみは、以下のようになる。せん断ひずみは、 formula_7 と formula_8 の間の角度の変化である。図より、以下の式を得る。変位勾配が小さいと仮定すると、以下のようになる。さらに回転も小さいとすると、αとβが 1 より非常に小さいので、formula_12 となる。"x" , "y" , "u" , "u" の交換によって、γ = γ が示される。同様に、yz平面、zx平面について、次式が得られる。微小ひずみテンソルのせん断ひずみ成分は、次のように記述できる。工学ひずみ、またはコーシーひずみは、荷重を加えたことによる物体の初期状態に対する総変形の比として表現される。部材軸方向荷重による工学垂直ひずみ"e" は、物体の初期状態における長さ"L" に対する、長さの変化量として記述される。垂直ひずみは、引張荷重の場合は正となり、圧縮荷重の場合は負となる。ここでformula_18 は変形後の物体の長さである。ストレッチ、または延伸比は、特異線要素における垂直ひずみの測度であり、線要素の変形後の長さ formula_18 と変形前の長さ"L" の比で定義される。ストレッチは、次式によって工学ひずみと関連づけられる。ストレッチλ = 1 の時、垂直ひずみ"e" = 0 になり、変形は生じない。ストレッチは、3から4のストレッチを与えても降伏しないエラストマーのように、大きな変形を示す材料の解析に用いられる。一方、コンクリートや鋼などは、低いストレッチで降伏する。対数ひずみは、自然ひずみ、真ひずみ、ヘンキーひずみとも呼ばれる。以下のひずみ増分を考える。対数ひずみは、このひずみ増分を積分することによって得られる。ここで "e" は工学ひずみである。対数ひずみは、ひずみ経路の影響を考慮して、増分変形の連続で生じた最終的なひずみを表す。3次元におけるこれらのひずみの定義は変形勾配を参照のこと。岩盤(プレート)が変形すること、またはその大きさをひずみという。地下の岩盤の一部においてもプレート運動の影響で応力が発生しており、これによりひずみが蓄積されて岩盤の耐力の限界に達すると、地震が発生する。ひずみテンソルは2階の対称テンソルであるため自由度が6であるが、元々の変数である変位の自由度は3であるから、ひずみ成分の間にはある関係が存在する。この関係式を適合条件式()という。あるいはまとめてとも表記される。ひずみが適合条件式を満たし、変位場u が変位規定境界∂"R" における境界条件を満たすとき、その変位場u を運動学的に許容な場という。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。