分岐器(ぶんきき、ぶんぎき、)とは、鉄道線路において線路を分岐させ、車両の進路を選択する機構。アメリカ英語での正式名称は、ターンアウトスイッチ。アメリカでは、分岐器のうち、進路を転換する部分のことをポイント (point) というが、英国および英国から鉄道を導入した国々では、分岐器全体のことをポイントと呼ぶ。分岐器は一般的に1線の線路を2線(またはそれ以上)に分岐させるものであり、下記の4つの部位から成る。1線側を前端、2線側を後端と称する。専門的には、たとえば「弾性分岐器」といえば弾性ポイントを使用した分岐器全体を指し、「弾性ポイント」といえば上記4部位のうちの「ポイント部」だけを指す。分岐器は通常、図に示したような構造になっている。黒線はストックレール(基本レール)、茶色の線はトングレール(先端軌条)、赤線はリードレール、紫の線はウィングレール、青線はガードレール(護輪軌条:ごりんきじょう)、オレンジ色の線は主レール、緑線はノーズ(鼻端レール)またはフログ(轍叉・てっさ)と呼ばれる。進路変更をするときは、トングレールを分岐側と反対側のストックレールに移動する。なお、弾性分岐器では、トングレールとリードレールとウィングレールが一体化されている。分岐器は、通常はある一定の方向(本線)に列車を進入させるようになっている。これを定位という。また、通常とは異なる方向(副本線)に列車が進入するようになっていることを反位という。また列車が分岐器の分岐する方向に向かうことを対向といい、列車が分岐器の合流する方向に向かうことを背向という。ノーズ付近に見られるすき間は車輪のフランジがスムーズに通過できるように設けられたもので、フランジウェイと呼ぶ。磨耗防止とこのすき間による他線への誤進入を防ぐため高速通過する車両は減速を強いられる。このため、高速運転の多い線区には下記のノーズ可動式分岐器が多く用いられる。上記のフランジウェイによる問題点を解決するため、ノーズまたはウィングレールを可動式にしてウィングレール(ノーズ)に密着させる事でフランジウェイを塞いで、高速通過を確実にしているものであり、主に新幹線などの高速鉄道で多用されている。その場合、ノーズ(ウィングレール)はトングレールと連動するようになっている。右に可動式ノーズ(ノーズ可動クロッシング)の概略図を示す。このうち水色のレールが緑色のレールを軸にして動くことによって、フランジウェイを塞いでいる(図では直進の場合のフログの状態)。異線進入のリスクが小さいので、クロッシング部のガードレールが省略されることがある。従来、可動式ノーズは、新幹線以外の在来線や私鉄線においても北越急行ほくほく線や京成成田スカイアクセスなどのように高速通過の多い分岐器を中心に設置されていたが、近年は高速通過を行わない分岐器においても騒音低減の目的で、ノーズ可動式分岐器を採用する事例が増えている。高速で通過する箇所では、さらにトングレールとリードレールを一体化して、たわませる構造としている。基本レールとトングレールとの間が密着(接着とも言う)せず隙間があると、高速走行に支障を与えるため、その2本のレールが密着しているかどうかを監視する接着照査器を基本レールの外側に2台ずつ設置するとともに、分岐器の開通方向を表示する開通方向表示器をクロッシング部手前(対向方向)のレールの間に設置しており、開通側には黒地に緑色縦線2本の表示が現れて、非開通側には白地に赤色の×印が現れるようになっている。基準線と分岐線との開き具合を番数によって示す。番数は、基準線と分岐線のなす角度によって決まる。分岐線と本線が1m離れるのに必要な本線の長さをメートル単位で表した数値が番数になる(余接、cotangent)。たとえば片開き分岐器の場合、分岐点(理論交点と呼ぶ)から基準線を分岐器後端方面に12m進んだときに分岐線と1mの開きがあった場合、この分岐器は12番分岐器と称し、「#12」と表記することもある。通常はこの番数が整数となるものが使用される。分岐器番数が大きいほどリード半径を大きくすることができ、その結果列車の通過制限速度を高くすることができるが、分岐器延長が長くなり、高価であると共に据付けのための広い用地が必要となる。また、同じ番数の分岐器であっても軌間が大きいほどリード半径は大きくなるので、軌間が大きいほど分岐器列車通過制限速度を高くすることができるが、同時に分岐器延長が長くなる。番数 #"n" と分岐角 θ(単位:ラジアン)の関係は次式のとおりである(上は片開き分岐器の場合、下は両開き分岐器の場合)。トングレール(分岐器の分岐部分のレール)の後端部継ぎ目部分に遊間(隙間)を設け、ポイント転換の際にトングレール後端部が滑り移動しながら動作するポイントのこと。大正14年型分岐器や側線用分岐器などに使用される。トングレール(分岐器の分岐部分のレール)の後端部継ぎ目部分に遊間(隙間)を設け、ポイント転換の際にトングレール後端部を中心にして回転するように動作するポイントのこと。50Nレール使用の本線用分岐器など、全国的に最も多く使用されてきたが、トングレール後端部継ぎ目部分での衝撃・損傷が大きいので、主要幹線では次項の弾性ポイントに更換されつつある。トングレールとリードレールを一体化してトングレールの後端部継ぎ目をなくしたポイントのこと。トングレール後端部レール底面に切り欠きが設けてあり、トングレール全体をたわませて転換する。弾性ポイントを使用した分岐器のことを弾性分岐器と称する。分岐器通過時の振動や騒音が押さえられ、通過速度を向上できる特徴がある(直線側は事実上速度制限がない)。新幹線や高速列車の多い路線で多く使用されるが、一般的に他の分岐器より高価となる。在来線では、JR四国予讃線の本山駅に最初に設置され、160km/hで通過した実績がある。乗越ポイントと乗越クロッシングの両方またはどちらか一方を用いた分岐器のこと。乗越クロッシングは、分岐線側に列車が進入する場合、基準線を車輪が直接乗り越えていく構造をしている。乗越ポイントには横取り装置と呼ばれる渡り板のような装置を覆いかぶせる。基準線側を列車が通過するときは基準線にフランジウェイがないので(分岐器のない通常の軌道部分と同じであり)滑らかに通過できる特性をもつが、分岐線側に列車が進入した場合は列車の上下動が大きくなる欠点がある。したがって、分岐線側に滅多に列車が進入しない安全側線や保守車両用留置線に多用される。乗越分岐器は手動式、自動式とに大別でき、手動式ではトングレールは動かず、分岐器脇に据え付けられた横取り装置を覆いかぶせて使用する。自動式でのトングレールは横取り装置一体型で、ポイントが分岐線側に開通した場合に関節ポイントのように横取り装置が移動し、基準線の上に覆いかぶさる構造となっている。在来線での分岐器の分岐側は、分岐側の曲線半径であるリード半径、分岐器の強度、乗り心地、分岐器の保守などを総合して、安全比率を一般曲線より小さい5.5として、速度制限が決められる。在来線での分岐器の直線側は、分岐器のクロッシングの強度、トングレールの開口、クロッシング部分のガイドレールおよびウイングレール(翼レール)の背面横圧の限度以上、保守量の増加の理由により、速度制限があり、高速列車においては、直線で最高速度で走行しても、分岐器が存在する通過駅では減速を余儀なくされ、鋸運転と呼ばれる加速や減速を繰り返していた。これについては、改善対策が行われており、枕木の強化、分岐器のレールに使用されるヒールボルトの強化、分岐器の下部に設置されている床板の強化、車輪およびレールの保守限度の見直しにより、従来の制限速度である100km/hから120km/hに上げられており、通過駅での減速を無くして表定速度の向上が図られている。分岐器を操作する装置を転轍器(てんてつき)と呼ぶ。電気指令によって、本体内部にある制御リレーと回路制御器が作動し、その後モーターないし空気シリンダーが動作してそれを動力源として切り替える転轍器で、1箇所で集中制御する際に用いられており、進路の状態を表すには信号機が用いられる。構造としてはレールを切り替える転換部と、分岐器を列車が通過している間に転轍器が転換しないように鎖錠する転換鎖錠部とで構成されており、前者はモーターからフリクションクラッチと減速歯車を経由して転換ローラーに繋がり、そこから動作桿とスイッチアジャスターロッドとスイッチアジャスタを経由してダイバー(転てつ棒)でトングレールに接続されており、後者は転換部からロックピースと鎖錠桿を経由して接続桿に繋がり、それがトングレールの先端にあるフロントロッドに接続されている。また、手動で転換できるように転轍器本体に手回しハンドル穴があり、手動で完全に転換してその後に鎖錠状態になった時に、手回し完了表示窓に矢印の表示が出るようになっている。また電気転轍器の種類としてはNS形とG形の他、本線以外の側線用にYS形がある。素早い切り替えが要求される操車場等では圧縮空気を用いる電空転轍器が、それ以外の場所ではモーター式電気転轍器が使用されている冬季は凍結によって動かなくなるのを防ぐため、下から火を当てたり電気式の融雪機(カンテラと呼ばれる。合図灯とは別)を設置することもある。北海道や東北地方のほとんどの駅・信号場では転轍器部分にカバーをかぶせたり、防雪シェルターで覆ったりしている。現場で手動で切り替える転轍器であり、その動作方法によって3種類がある。主要な手動転轍器には、転轍器標識が設置される。進路の状態を表すのに、標識またはランプを用いるものもある。世界的に規格がまちまちであるため複数の方式が使用されている。日本においては1983年に当時の建設省・運輸省の指導による統一規格「標準型新交通システム」が策定された以降は、側方案内方式では水平可動案内板方式が使用されている。車両側には、各車両下部にある台車から案内バーが左右両側に伸びており、その先の上部にはガイドウェイの案内軌条を走行して転動方向を規制させる案内輪、下部には分岐で進行方向を変えるために使用する分岐案内輪が取付けられている。案内輪は、走行軌道(ガイドウェイ)に沿って両側に設置された、HまたはI形鋼による案内軌条に車両の両側にある案内輪が走行することで、走行中の車両の転動方向を規制して案内する装置であるが、車両が分岐場所を通過する際には案内軌条の一側を離さなくてはならない。地上側の分岐場所には、2つの可動案内板と固定案内板がガイドウェイの両側の案内軌条の下に設置されており、可動案内板が電気転轍器で可動することによって分岐器の役割を果たす。車両は可動案内板に車両側の左右どちらかの分岐案内輪が入り込み、その後、固定案内板を通過することによって車両の進行方向が選択できる。すなわち両側拘束の案内軌条を離れ、一時的に片側のみを拘束することによって分岐するのである。モノレールやHSSTも鉄道に分類され、その線路には分岐がある。跨座式の場合は、上記までの2本のレールやガイドウェイを使うものに比べると、モノレールの軌道は1本で車両重量全体を支えるために幅が広く重量が大きく、また、その構造上、鉄軌道のそれのように轍を乗せ換える方式ではなく、軌道を繋ぎ変える方式となる。主な方式としては関節式と関節可撓(かとう)式がある。前者は、1つの分岐器を使用して軌道を転轍させる支点よりそのまま曲げる方式で、乗り心地は悪くなってしまう。そのため、本線では使用されず、乗り心地を追及する必要のない、車両基地内や、側線への分岐点で使用される。後者はいくつかの短い桁を組み合わせ軌道を転轍する方式で、それぞれの桁は関節で接続されているため、車体の振動が関節式と比較して極力少なくすることができる。また、構造上分岐の形式は通常単純な複数方向への分岐かシングルクロスが多いが、東京モノレール羽田空港第2ビル駅のように、ダブルクロッシングを設ける例もある。このほかアメリカ・ニューアーク空港のエアトレインでは反転する軌道の上下にそれぞれ定位と反位の軌道を設け、回転させることで軌道を切り替える分岐器を採用している。常電導リニアの一つである、HSSTでは軌道の設置方式にダブルビーム型とシングルビーム型があるが、現在実用化されているシングルビーム型では、構造上モジュール(台車に相当)が軌道を抱え込む方式となっているため、跨座敷モノレールと同様の関節式・もしくは関節可撓式の分岐器が採用されている。懸垂式の場合は、鉄軌道のトングレールとリードレールに相当するT形断面の可動レールが転轍させる支点を中心に可動して軌道を転轍する方式を採用している。案内車輪を誘導するレールを用いる方式の場合、分岐器が必要となる。仏:トランスロール社のトランスロールにおいては、それぞれ分岐器中央部後端よりに支点を持つ2本1組の案内軌条がずれて進路を構成する方式や、跨座式モノレールのようにポイント先端部に支点を持つ一本のレールを繋ぎかえる方式が用いられている。また、クロッシング部ではターンテーブル状の線路を用いて進路を構成する必要がある。ボンバルディア・トランスポーテ―ションのTVR方式においても同様な分岐器が用いられているが進路でない軌道が一部カバーに隠れる構造となっており、支持方式の構造上クロッシングにターンテーブルは用いられない。ケーブルカーでは、丁度中間地点で行き違いをすることになるため、その前後に二又を設け、進行方向によって互いに別の側に入るように配線する。左右の車輪の片側は両フランジ車輪、もう片側はフランジなしの厚みのある車輪という特殊な構造を使用することで、分岐器に可動部をなくしたものがよく使われる。超電導リニアの山梨実験線では、高速浮上区間用としてトラバーサ方式、低速車輪走行区間用として側壁移動方式、車両基地用、の各分岐装置の試験をおこなっている。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。