オーム()は、インピーダンスや電気抵抗(レジスタンス)、リアクタンスの単位である。国際単位系 () におけるの組立単位のひとつである。名称は、電気抵抗に関するオームの法則を発見したドイツの物理学者、ゲオルク・ジーモン・オームにちなむ。記号はギリシャ文字のオメガ (Ω) を用いる。これは、オームの頭文字であるアルファベットのO(オー)では、数字の0(ゼロ)と混同されやすいからである(なお、オームの名前をギリシャ文字で表記するとΓκέοργκ Ωμとなる)。電気抵抗を表すための単位は、初期の電信業務に関連して経験的にいくつか作られてきた。1861年にが、質量・長さ・時間の単位から組み立てた実用上便利な大きさの単位としてオームを提唱した。オームの定義はその後何度か修正された。オームは、「起電力源を含まない1個の導体の2点間に加えられた1ボルトの一定電位差がこの導体中に1アンペアの電流を生じさせるとき、その2点間に存在する電気抵抗」と定義される。他の単位で組み立てると、以下のようになる。formula_1ここで登場する単位は、ボルト (V)、アンペア (A)、ジーメンス (S)、ワット (W)、秒 (s)、ファラド (F)、ジュール (J)、キログラム (kg)、メートル (m)、クーロン (C)である。オームの法則より、ある装置に印加する電圧"V"と、その装置に流れる電流"I"は、多くの場合、比例する("V" = "R" ・ "I")。その比例係数"R"を電気抵抗という。つまり、"R" = "V" ・ "I" である。この"R"のSI単位がオームΩである。"V"のSI単位がボルトV, "I"のSI単位がアンペアAなので, Ω=V・Aである。1ボルトの電圧を印加したときに1アンペアの電流が流れた場合、その装置は「1オームの電気抵抗を有している 」 という。電力"P"は、"P"="V"・"I"と表せるので、"P"="R"・"I"となる。従って、"R" = "P" ・ "I" となる。このことから、ある装置に1アンペアの電流を流したとき、1ワットの電力を消費した場合、その装置もまた1オームの電気抵抗を有している、ということができる。SI基本単位では、ボルトVがm・kg・s・Aとなるので、Ω=V・Aより、オームΩはm・kg・s・Aとなる。複素数で表されるインピーダンスは電気抵抗を一般化したものである。その実数部は電気抵抗であり、虚数部はリアクタンスである。一貫性のために、インピーダンス、リアクタンスは電気抵抗と同じオームの単位を用いる。電気・電子の分野で一般的に用いられる倍量・分量単位は、マイクロオーム、ミリオーム、キロオーム、メガオーム、ギガオームである。英語圏において、キロオーム(kiloohm)、メガオーム(megaohm)について接頭辞の最後の母音が欠落した「キルオーム」(kilohm)、「メグオーム」(megohm)の形で表記・発音されることがあり、NISTはこれらを容認している。同様に、ギガオーム(gigaohm)についても非公式に「ギグオーム」(gigohm)と表記・発音されることがある。日本においては、かつてはメグオームの読みが使われていたが、若年の技術者を中心にメガオームという読みが広まっており、年配の技術者がこれを誤りと指摘する場面がしばしば見られる。法令では、「メガオーム」という正式な表記が、電気通信事業法などにある。オームの測定値の逆数は、コンダクタンスの単位であるジーメンスの測定値となる。コンダクタンスの単位は、かつては ohm を逆につづった mho(モー、)が用いられていた。電気抵抗formula_2(Ω)はformula_3と表される(formula_4: 導体長(m)、formula_5: 導体断面積(m))。比例係数formula_6を電気抵抗率といい、その単位はΩ·m/m = Ω·m(オーム・メートル)となる。1オームメートルは、「長さ1メートル、断面積1平方メートルの導体の電気抵抗が1オームであるときの導体の電気抵抗率」と定義できる。19世紀後半の電気工学の急速な発達は、電気に関する物理量のための、合理的で、一貫性のある、矛盾のない、国際的な単位系の需要を引き起こした。19世紀の電信技手や他の初期の電気の利用者は、実際的で標準的な電気抵抗のための計測単位を必要とした。電気抵抗は、標準的な長さの電信用ワイヤーの抵抗の倍数で表された。しかし、異なる機関は異なる標準を使ったので、単位はすぐに換算できなかった。定義された電気の単位は、エネルギー・質量・長さ・時間の単位による一貫性のある単位系ではなかった。そのため、エネルギーや仕事量と電気抵抗を関連づけた計算においては、変換係数が必要となった。電気の単位系を確立するに当たって、2つの異なる方法が選ばれた。1つは、定義済みの抵抗・電圧などを定義するために特定の人工物(例えば特定の長さの電線や標準電池)を指定する方法である。もう1つは、電気の単位を力学の単位に関連づけて定義する方法である。例えば、電流の単位は2本の電線に電流を流した時に電線に働く力により定義され、電荷の単位は2つの荷電した物体に働く力により定義する。この後者の方法は、エネルギーの単位との間で一貫性を確実にする。エネルギーや時間の単位と一貫性のある抵抗の単位を定義するためには、電圧と電流の定義が必要になる。「1単位の電圧が1単位の電気抵抗に1単位の電流を流す」というように定義できれば望ましい。そうでなければ、あらゆる電気に関する計算に換算が必要になる。電荷と電流のいわゆる「絶対単位」(absolute units)が質量・長さ・時間の単位の組合せとして表されるので、電圧・電流・電気抵抗の間の次元解析により、電気抵抗は時間あたりの長さ、つまり速度の単位で表されることが示される。初期の電気抵抗の単位の定義は、例えば、単位抵抗を「1秒につき地球の外周の四半部」のように定義した。絶対単位系は、磁気的・静電的な量を質量・時間・長さのメートル法の基本単位と関連づけた。これらの単位には、電磁気の問題の解決で使われる方程式を単純化するという大きな利点があり、電気に関する量についての計算で換算が不要になった。しかし、CGS単位では、実際的な寸法のために非実用的な大さきを持つことがわかった。抵抗の単位の定義として、様々な人工物による標準が提案された。1860年、ヴェルナー・フォン・ジーメンスはの科学雑誌『アナーレン・デア・フィジーク』で再現可能な電気抵抗の標準についての提案を行った。彼の提案は、断面積1 mm、長さ100 cm、温度0 の純粋な水銀の柱の電気抵抗を1とするもので、ジーメンス水銀単位と呼ばれる。現在のオームで正確に表せば、0.9534 Ωとなり、現在のオームにほぼ等しい。定義に水銀が使われるのは、常温で液体の水銀は断面積の調整が容易なためである。この定義により、水銀の電気抵抗率は約1 µΩmとなっている。なおジーメンスの名は、電気伝導度(電気抵抗の逆数)の単位ジーメンスに残っている。しかし、このジーメンスの提案による単位は、他の単位との一貫性がない。水銀柱の長さを調整して、一貫性を持った単位に値を合わせるという提案もあった。単位の全てのユーザが計測学実験を必須の精度にあてはめるためのリソースを持っているわけではないので、抽象的で物理的な定義に基づく標準は必要とされた。1861年、とは英国科学振興協会(BAAS)の会議で、電気の単位のための基準を確立し、その単位に著名な学者に由来する「オーマ(Ohma)」、「ファラド(Farad)」、「ボルト(Volt)」の名をつけることを提案した。1861年、BAASは、電気抵抗の標準について報告させるために、マクスウェルとトムソンを含む委員会を指名した。彼らの目的は、使いやすい大きさで、電気の計量のための完全なシステムの一部で、エネルギーの単位と一貫性があって、安定で、再現可能で、フランスの計量システム(メートル法)に基づいた単位を考案することだった。1864年の委員会の第3報告書では、抵抗の単位は「B.A.単位(B.A. unit)」または「オーマド(Ohmad)」と呼ばれていた。1867年までに、単位は単に「オーム(Ohm)」と呼ばれるようになった。1874年、BAASは、電圧の単位ボルトと共に、新しく定義したオーム(B.A.オーム)を採用した。B.A.オームは現行のオームとほぼ同じ大きさであるが、定義の仕方は異なる。当時の単位系の標準はCGS-emu単位系であり、B.A.オームはCGS-emuの電気抵抗の単位の倍とすることを意図していたが、計算誤りにより1.3%小さく定義された。このという係数は、ジーメンスの水銀単位とほぼ同じ量になるように選ばれたものである。これは、実験室で再現可能な量を単位接頭辞なしで表すための、倍量単位の便利な別名であり、実用単位 () と呼ばれた。1881年9月21日、国際電気会議(現在の国際電気標準会議(IEC))は実用単位としてのオームを承認した。その定義は、ジーメンスの水銀単位とほぼ同じである。1884年にパリで開かれた国際電気会議で、再現可能な標準である「法的オーム(legal ohm)」を、指定された重さで長さ106 cmの水銀柱の電気抵抗と定義した。この106 cmという値は、B.A.単位(104.7 cmに等しい)、シーメンス単位(定義上100 cm)、CGS単位の間の妥協によるものである。「法的」という名称にもかかわらず、この標準はどの国も国家標準として採用しなかった。「国際オーム(international ohm)」は、1893年にシカゴで開かれた国際電気会議で採択されたもので、長さ106.3 cm、質量14.4521 g、温度0 °Cの水銀柱の電気抵抗と定義された。この定義は、いくつかの国で採用された。1946年の国際度量衡委員会(CIPM)の決議により、人工物による定義に代えて、ボルトとアンペアから組み立てる現行の定義になった。元が実用単位であったにもかかわらず、オームが基本単位アンペアから導出できるのは、アンペアもかつては実用単位で、恣意的に選ばれた係数を含むからである。水銀柱によるオームの標準の現示法は再現が難しいことがわかった。これは、非定数のガラス管の断面積の影響によるものである。様々な抵抗コイルが英国学術協会やその他の団体によって造られ、抵抗の単位の物理的な人工物基準として使用された。温度・気圧・湿気・時間の標準に対する効果が見つけら分析されたため、これらの人工物の長期の安定性と再現可能性は研究の進行中の分野となった。人工物による標準は未だに使われているが、正確に形成された誘導子とコンデンサによる計測学の実験により、基本的な基礎がオームの定義に提供された。1988年の国際度量衡委員会の勧告により、1990年よりオームの値は量子ホール効果に基づき、フォン・クリッツィング定数の協定値(R = 25812.807 Ω)を用いて決定されている。較正のために扱いやすい値を持つ他の標準の安定性をチェックするのに、量子ホール効果は使われる。オームの単位記号は、コードポイントでUnicodeにコード化されている。しかしこれは、既存の文字コードとの互換性のために用意されている互換文字である。Unicode標準では、この文字の代わりに、つまりギリシャ文字の大文字のΩ(オメガ)を使うことを推奨している。「次の3つのは、普通の文字と正準等価である: 、、。これら3つの全ての文字については、普通の文字が使われなければならない。」また、Unicodeには、オームの倍量単位を表す上記の文字が収録されている。これらはCJK互換文字であり、既存の文字コードに対する後方互換性のために収録されているものであるので、使用は推奨されない。
出典:wikipedia
LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。