LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

無限

無限(むげん、infinity)とは、限りの無いことである。直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学や論理学、あるいは自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。感覚的には分かり易いと思われる直観的な無限大・無限小の概念ではあるが、現代的な実数論には直接的には存在しない(いわゆる ε-δ 論法によって量的に扱われる)。一方で、超準解析などにおいては数学的に定式化され、その存在を肯定される。紀元前400年から西暦200年頃にかけてのインド数学では、厖大な数の概念を扱っていたジャイナ教の学者たちが早くから無限に関心をもった。教典の一つである「スーリヤ・プラジュニャプティ」("Surya Prajnapt"i)では、すべての数は可算、不可算、無限の3種類に分類できるとしている。さらに無限には、1方向の無限、2方向の無限、平面の無限、あらゆる方向の無限、永遠に無限の5種類があるとした。これにより、ジャイナ教徒の数学者は現在でいうところの集合論や超限数の概念を研究した。「ウロボロスが由来となっている。」や、「ジョン・ウォリスが無限大の記号として採用したのが最初である。」などの説が存在するが、「ローマ数字のↀ(CIƆ)が変化したものである。」という説が有力とされている。ドイツの数学者ゲオルク・カントールは、無限には異なる種類があることを見出し、これを超限数と名付けた。現代数学では濃度の概念で捉えられる。超限数は formula_1(アレフ)の記号を用いて表記され、最も濃度が小さいものは formula_2(アレフ・ヌル、またはアレフ・ゼロ)で表される。formula_2 の次に大きい濃度を持つ集合の濃度は formula_4 で表され、以後同様に formula_5 等が定義される。一方、濃度 formula_6 を持つ集合の冪集合の濃度は formula_7 で表されるが、この濃度が常に formula_6 より真に大きくなることがカントールにより証明されている。自然数全体の集合 N の濃度は formula_2 である。整数全体の集合 Z や有理数全体の集合 Q の濃度も formula_2 であり、この無限を可算無限と呼ぶ。formula_11 の濃度を持つ集合としては実数全体の集合 R がある。カントールは、formula_2 より濃度が大きく formula_11 より濃度が小さい無限は存在しない --- つまり formula_14 が成り立つ --- という仮説(連続体仮説)を立てたが、これを証明することはできなかった。連続体仮説は、現在では通常の数学の体系からは「証明も反証もできない」ことが証明されている。ある集合が自身と対等な(すなわち同じ濃度を持つ)真部分集合が存在するとき、その集合はデデキント無限であるという。デデキント無限でない集合はデデキント有限であるという。デデキント無限集合は常に無限集合であるが、その逆を証明するには弱い形の選択公理が必要である。無限集合が、デデキント無限集合であるということと、可算無限部分集合を持つことは同値である。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。