LINEスタンプ制作代行サービス・LINEスタンプの作り方!

お電話でのお問い合わせ:03-6869-8600

stampfactory大百科事典

回生ブレーキ

回生ブレーキ(かいせいブレーキ)は、通常は電源入力を変換して駆動回転力として出力している電動機(モーター)に対して、逆に軸回転を入力して発電機として作動させ、運動エネルギーを電気エネルギーに変換して回収または消費することで制動として利用する電気ブレーキの一手法。発電時の回転抵抗を制動力として利用するもので、電力回生ブレーキ、回生制動とも呼ばれる。電動機を動力とするエレベーター、鉄道車両、自動車他、広く用いられる。鉄道においては、電気機関車と電車で用いられ、それらの主電動機で発電し、発生した電気エネルギーは架線や第三軌条(以下、電力供給線を架線とする)に戻される。また、自車内で蓄電池等に蓄える場合や、架線に戻した後、変電所で熱エネルギーに変換して捨ててしまう場合も一般的に回生ブレーキと呼んでいる。回生ブレーキは発電ブレーキの一種であるが、車両からこれらに電気を戻すものを回生ブレーキ、自車内で抵抗器等により熱エネルギーに変換して捨ててしまうものを発電ブレーキと呼び、区別している。回生ブレーキを使用することにより、列車の消費電力を削減(力行時と制動時で相殺)できるほか、フラット発生による乗り心地悪化の抑止や、特に摩擦ブレーキ(空気ブレーキなどの基礎ブレーキ)として踏面ブレーキを採用している車両においては、タイヤ摩耗率の抑制や長い下り勾配区間などでの過熱によるタイヤ弛緩の阻止が期待でき、また地下トンネル内の温度上昇の問題も軽減できる。技術の進歩でさらに摩擦ブレーキ使用率の低下(純電気ブレーキを参照)が実現したことにより、近年登場している新形の電気車(電気機関車と電車)のほとんどが、この回生ブレーキを採用している。ただし、回生ブレーキを使うためには、車両から送り返される側の電圧が架線側より高くなければ十分な電力回生を行うことができず、ブレーキ性能が低下する現象(回生失効)が発生してしまうため、負荷となる変電所内設備や他の電車(列車)が一定以上必要となる。また変電所・架線等の事故や集電装置破損時には回路が絶たれるために使用できなくなる問題がある。そのため、他の列車が電力を消費する確率が低く、送電設備にかけるコストも限られるローカル線や、特に安定したブレーキ性能の要求される路面電車や急勾配線等では、あえて発電ブレーキを採用したり、回生ブレーキを採用する場合にも発電ブレーキと併用することが多い。発電ブレーキを併設している車両には、ある程度速度が落ちると回生ブレーキから発電ブレーキに切り替えるタイプ(近畿日本鉄道の車両など)と、回生ブレーキを使いながら、架線に回生できない余分な電力を発電ブレーキで消費させるブレーキチョッパタイプ(JR東海313系電車、JR東海383系電車、JR東日本651系電車、JR東日本E257系電車、岡山電気軌道9200形電車など)とがある。また、架線電圧が安定しない場合でも、安定した回生ブレーキを生み出す特徴を持つベクトル制御の車両も出てきている。交流電化においては比較的変電所の回路が簡単(降圧のみで整流を行わない)で、架線から変電所を通し、電源側への回生も容易である。また、き電区間が長いため(距離が長くなれば列車本数も多くなる)、発生した電力を他の車両が消費する機会も多い。もっとも、国鉄時代に技術が確立された日本の交流車両や交直流車両は、直巻整流子電動機を動力に用いる直流車両に(変圧器と)整流回路を追加した方式であり、交流側に電力を戻すには、車両側から架線側に周波数と電圧の位相に合わせた電気を架線に戻さなければならないため、可逆コンバータ(インバータ機能を持つ整流回路)を搭載する必要があり、最近まで回生ブレーキはあまり用いられていなかったが、近年の半導体の電力変換技術の進歩により、架線側の周波数と電圧の位相に合わせた電気を架線に戻すことが容易にできるようになり、それにより交流区間での回生ブレーキが一般に使用されている。気動車でもハイブリッド方式である東日本旅客鉄道のキハE200形は回生ブレーキを採用している。下記の「自動車」と同様に、回生負荷を自車の蓄電池としているが、余剰分のブレーキ力も一旦電力として回収し、発電機をモーターとして作動させ、エンジンを排気ブレーキモードで回す(抗力をより大きくする)ことにより余剰電力を消費している。電気自動車(三菱・i-MiEV、日産・リーフなど)やハイブリッドカー(トヨタ・プリウス、ホンダ・インサイトなど)で使われる。タイヤの回転を使いモーターで電力を発生させ、車両に搭載した蓄電池を充電し、加速時の電力とする。構造は、インバータによる可変電圧可変周波数制御(VVVF)を搭載した鉄道車両と同じで、回生負荷が蓄電池に変わるものである。ただし、頻繁な高深度充電は電池の寿命を著しく短くするため、回生電力量は抑えられている。また、ハイブリッドカーのうち、エンジンとタイヤが機械的につながっている車両(パラレル式、スプリット式など、エンジンも駆動力とするもの)ではエンジンブレーキも併用される。この他、1990年代後半ごろから電気自動車やハイブリッドカー以外の一般的な内燃機関自動車においても、オルタネーターを特に減速時に高負荷で稼働させることで加速時、巡航時の稼働負荷を抑え、燃費を向上させるものが存在する(充電制御)。モータースポーツの世界でも、2009年よりF1において導入された運動エネルギー回生システム(KERS)の実装の一つとして、回生ブレーキ型の電気システムがレースで使用されている。但しシステムの重量が約30kgと、マシンの総重量が600kg程度のF1マシンにおいては大きな割合を占め、KERS搭載時にはマシンの重量配分が大きく制約を受けるため、コースやチームのレース戦略によって搭載の可否が選択されている。またスーパーフォーミュラでも、将来的にKERSに相当する機能を持つ「System-E」を導入する予定となっている。一部のメーカーで発売されている電動アシスト自転車には、制動時に発生した電力を蓄電池に充電し、補助できる距離を伸ばすものがある(三洋電機・エネループバイク)。エレベーターの場合は、ある程度大型のものでは電動機で発生した回生電力を電力系統に逆流させるかたちで返してしまうが、マンションなどに設置される一般的なものでは、回生電力を抵抗器に流して熱エネルギーとして捨ててしまう発電ブレーキの方が一般的である。これは、発生する回生電力が鉄道車両などに比べ小さく、電力系統に逆流させる可逆コンバータを設置するコストに引き合わないからである。三菱電機の製品には回生電力を蓄電池に貯蔵し、停電時に短時間ながら運転を継続できる非常電源として使用するもの(商品名:エレセーブ)もあるが、これも一般的ではない。回生失効とは、鉄道車両において回生ブレーキの使用で発生した電力を架線などに返す場合、集電装置の離線や返却先である架線の電圧が極端に高い場合、また返却した電力を消費する列車がない場合に、制動能力が低下または無効となる現象である。これが起きるとほぼ完全にブレーキが利かなくなるため、停車駅直前で発生するとブレーキが切り替わっても制動力が足りず、しばしばオーバーランの原因にもなる。この現象は特に直流電化されている路線で発生しやすい。これは交流電化に比べて直流電化では「饋電(きでん)」区間が短いという要因にもよるが、直流変電所において交流から直流への変換にダイオードブリッジ(シリコン整流器)が用いられていることに起因する。ダイオードブリッジは電流の流れる方向を規制するその機器の特性上、交流から直流へ変換することはできても、直流から交流へ逆変換することはできない。そのため回生ブレーキによって発電した電力は、変電所を通じて直流→交流となることはなく、特に対策を施さない場合は同じ変電所の同じき電区間内に電力を消費する他の「負荷」がなければ回生ブレーキは作動せず、「回生失効」となる。また、交流電化区間であっても、離線やデッドセクションを通過する場合には回生失効が発生する可能性がある。この回生失効現象が発生した場合、回生ブレーキ性能が大幅に低下、または無効化する。また、回生ブレーキを使用しない車両と併結している場合に、車両間で制動力に大きな差が生じ、いわゆる「ドン突き衝動」が起こる。このため、以下のような対策がとられている。《車両側》発電ブレーキの併設は、近鉄大阪線のように山間で急勾配が長距離に渡って続く区間を擁し、回生失効によるブレーキ力低下が重大事故につながる危険性のある路線で使用される車両を中心として、フェイルセーフ性を確保する目的で行われている。抵抗制御をベースとした制御方式(直巻他励界磁制御、界磁チョッパ制御、界磁添加励磁制御)では元々電圧制御段が抵抗制御であるため、従来通りこれを発電ブレーキの抵抗として使用できるが、電機子チョッパ制御、サイリスタ連続位相制御、VVVFインバータ制御、及び日本では主流に至らなかった回転式位相変換器を用いた交流電動車の場合は、専用に抵抗器を搭載する必要がある。また、抵抗制御を使用している車両であっても通常よりも大容量の抵抗器を搭載するケースが少なくない。集電装置の離線による回路切断で発生する回生失効は、集電装置を複数搭載とすることである程度抑止が可能である。このため、回生ブレーキ非搭載の車両ではパンタグラフ1基搭載を原則とする路線であっても、回生ブレーキ搭載車に限ってはパンタグラフ2基搭載とするケースが少なくない。また、各車のパンタグラフ搭載数が各1基であっても、各車間の集電装置と制御器の間の母線を連結し1つの給電系統にまとめることで、同様の効果を得ることができる。ただし、この母線引き通しは編成両端の集電装置間の距離がき電区間の境界となるデッドセクションの長さを超えることはできない。《周辺設備》具体的な機器としては、古くは変電に用いられる回転変流機に交流・直流間の電力相互変換が可能な性質があるため、これが用いられていたが、静止形の変換器のうち、現在主流のシリコン整流器(シリコンダイオード)は電流を一方向にのみ流すというダイオードの性質を利用した整流方法からも明らかなように、この性質は備わっていないため、発生する電力を抵抗器で熱エネルギーのかたちで放出させるかインバータなどを使用して給電側に電力を帰す回生電力吸収装置を別途設置している(南海高野線や近鉄大阪線など)。また、かつての京阪京津線のように高頻度運転を実施する他線区(京阪本線)のき電系統へ供給、そちらを走行する列車に消費させることで発生電力を吸収するケースも存在した。このほか、京浜急行電鉄のように、回生電力の有効活用を目的にフライホイール式電力貯蔵装置を設置したり、近年では、キャパシタや蓄電池を利用した回生電力貯蔵装置も開発されている。直流1,500Vき電システムの場合、上限電圧は1,850Vに定められているので、変電所ごとに電圧監視をして設定した電圧(1,700V前後)に達するとインバータ(直流→交流50/60Hz一定、電圧も一定)→変圧器→自社送電線→駅や信号機の電力として使う。抵抗器は設定値をオーバーした場合に抵抗を並列に入れて消費するために用いられる。この抵抗式は小規模な路面電車や通過する列車本数の少ない区間などで使われる。回生ブレーキには主電動機の逆起電力が有効な電圧を得られなくなり、制動を終了する「打ち切り」がある。これも「回生失効」の一部とされる場合があるが、「打ち切り」は単純に抵抗器で電力を消費させる発電ブレーキにも存在する。通常、複巻電動機の方がこの「打ち切り」速度が高い。そのため、一般に直巻電動機を使用する電機子チョッパ制御に比べて、複巻電動機を使用する界磁チョッパ制御の方が、理論上は回生効率が低い。しかし、複巻電動機の場合、界磁調整器によって逆起電力を積極的に上げていくことができるため、架線電圧が比較的高い状況でも有効電圧を架線に返していることが多い。それに対し、電機子チョッパ制御では、主電動機の状態によっては単に逆電圧をぶつけているだけの状態になってしまうことがあり、制動力は確保できても電力を架線に返していないことが多く、実際の運用では界磁チョッパ制御の方が回生効率が高いと言われている。また、これを直巻電動機に応用した磁気増幅器による直巻主電動機の界磁率調整制御(直巻他励界磁制御)や界磁添加励磁制御も多用されてきた。「打ち切り」が発生すると、それまで効いていた電気ブレーキが切れ、他のブレーキに切り替わる(またはその分他のブレーキを強める)ため、その瞬間衝動が発生する。近年では回生ブレーキ打ち切り後にモーターに逆に電流を流して停止させる純電気ブレーキに切り替え、機械ブレーキの動作頻度を極力抑えたり、滑らかに減速、停止できるようにした車両が増えている。回生ブレーキを利用するには、架線や蓄電池などの電源より高い電圧を発生させる必要があるため、単に電動機を電源に接続しただけでは安定した制動力を得ることはできない。そのため、鉄道車両では安定した制動力と大きな回生電力を得るために様々な改良が加えられてきた。ただし、直流電動機で発生する回生電力は直流であり、交流電源に回生するには回生用インバーターが必要なため、従来の交流形車両や交直流車両で採用される例は少なかった。

出典:wikipedia

LINEスタンプ制作に興味がある場合は、
下記よりスタンプファクトリーのホームページをご覧ください。